《解説》

Fibrous Zeolites の鉱物化学

早稲田大学理工学部資源工学科 山崎淳司,大塚良平

1. はじめに

天然産ゼオライトの分類については、従来より Meier¹⁾, Breck²⁾, Barrer³⁾ などによる多くの 方法が提唱されているが、現在、鉱物学的に最も適 当であると考えられるのは、Gottardi and Galli⁴⁾ による分類で、これによると以下の6群に分けられ る。

- 1) Fibrous zeolites
- 2) Zeolites with singly connected 4-ring chains
- Zeolites with doubly connected 4-ring chains
- 4) Zeolites with 6-rings
- 5) Zeolites of the mordenite group
- 6) Zeolites of the heulandite group

このうち, fibrous zeolites groupは 4-1 SBU (Secondary Building Unit)¹⁾を基本単位とし, その骨格構造が鎖状をなす鉱物種の一群である。従って,この構造における c 軸方向の周期は,約 6.6 Åとなる。さらに、この骨格構造を構成する TO4四 面体における Si とAlの分布には,秩序型と無秩序 型があり,前者で Lowenstein 則に従うのは natrolite 型の分布と thomsonite 型の分布の2種類のみ である(図1)。これらの Si/Al の理想組成比は、そ れぞれ 1.5 および 1.0 となる。さらに幾何学的な考察 から、この鎖状構造単位の連結方法は 3 通り有り、 それらの組合せにより、6通りの構造が可能となる $m^{5,6)}$ 、そのうち現在までに見出されているのは、 natrolite型、thomsonite型および edingtonite型 の3通りしかない。鉱物種としては、現在8種が記 載されている(表1)。ただし、このうちparanatrolite は tetranatrolite の加水相であるから⁷¹、同一 種と考えてよい。従って、今後さらに他の可能な構 造をもつ鉱物種が天然に産する可能性は十分にある。

(B)の四面体鎖構造⁸⁾

Name	Schematic formula	Symmetry	IUPAC code
Natrolite	Na ₁₆ (Al ₁₆ Si ₂₄ O ₈₀) •16 H ₂ O	Fdd 2	NAT
Mesolite	$Na_{16}Ca_{16}(Al_{48}Si_{72}O_{240}) \cdot 64 H_2O$	Fdd 2	NAT
Scolecite	$Ca_8(Al_{16}Si_{24}O_{80}) \cdot 24 H_2O$	Fld1 or Cc	NAT
Tetranatrolite	$Na_8(Al_8Si_{12}O_{40}) \cdot 8H_2O$	I42d	NAT
Paranatrolite	Na ₈ (Al ₈ Si ₁₂ O ₄₀) • 12 H ₂ O	pseudo-orthorhombic	NAT
Gonnardite	Na ₅ Ca ₂ (Al ₉ Si ₁₁ O ₄₀) •12 H ₂ O	I 4 2d	NAT
Thomsonite	$Na_{4}Ca_{8}(Al_{20}Si_{20}O_{80}) \cdot 24 H_{2}O$	Pcnn	THO
Edingtonite	$Ba_2(Al_4Si_6O_{20}) \cdot 8H_2O$	$P\bar{4}2_1m$ or $P2_12_12$	EDI

表1 Fibrous zeolites の分類⁴⁾

本稿では、 そのうち natrolite 系列 (natrolitemesolite-scolecite)およびgonnardite系列(tetranatrolite-gonnardite)の5 鉱物種について、著者 らが行ってきた鉱物化学的研究の一部を紹介し、問 題点についても触れたい。

2. Natrolite 系列

Natrolite, mesolite および scolecite の3鉱物 種は、いずれも同じ natrolite 型骨格構造を持ち、 Si, Al 配列は秩序型である⁸⁾。 また, 含有する交 換性陽イオンは、ほとんど Na および Ca イオンのみ で、理想組成ではそれぞれ Na/(Na + Ca)=1,0.5, 0(原子比)である。従って、これらはNa⁺==Ca²⁺ 置換による連続固溶体をなすと考えられる。しかし 天然に産するものは極めて狭い組成領域に限られて おり、これらのNa/(Na+Ca)比が中間の組成の もの、またはSi/A1比が 1.50-1.62 以外のものにつ いては、その産出が報告されておらず、従ってその 性質も知られていない(図 2)。また、 natrolite 系 列のイオン置換に関する研究もいくつか発表されて いるが^{9~14)}、十分とは言い難い。とくに等温イオ ン交換曲線は、いずれの鉱物種についても全く報告 されていない。

化学組成領域⁸⁾

Na⁺===Ca²⁺置換系列の格子定数と脱水 挙動

著者らは、天然では得られ難い natrolite-mesolite-scolecite 系列の中間組成物について検討する ために、天然産試料についてNa⁺または Ca²⁺置換 を行い、一連の組成のものを作成し、格子定数およ び脱水挙動を検討した¹⁵。

2.1.1 格子定数

今回の処理により得られた全ての置換物は、粉末 X線回折パターンにおいて単一相と認められた。天 然産試料および得られた一連のイオン置換物の、交 換性陽イオンのNa比(NagO/(NagO+CaO+KgO) モル%、K,O~0)に対する各格子定数の変化を図3 に示す。ただし、この計算で用いた単位胞は、Alberti et al.⁸⁾ によるものである。ここでは、natrolite およ びmesoliteの空間群はFdd2を, scoleciteのそれは F1d1を採用する。また, mesolite のイオン置換 物については、他との比較のために、b値について はその1/3をプロットした。 Natrolite-mesolite および mesolite-scolecite の各組成領域では、格 子定数の変化の様子が異なる。即ち、natrolitemesolite 領域では、 β および c の値はほぼ一定で、 粉末X線パターンから判断すると斜方晶系であり、 a, bはNa比に対してそれぞれ直線的に変化する。 一方、mesolite-scolecite 領域では、Na 比が減少

収縮する。ここでも、a, b, c は Na 比に対 して直線的に変化する。ただし、それぞれの 組成領域間では、 Na 比の変化に対する各格 子定数の変化率が異なる。以上の事実から、 natrolite-mesolite 間の Na⁺==Ca²⁺ 置換に よる骨格構造の変化は、 *a*-b 平面上での. $T_{5}O_{10}$ (T=Si, Al) ユニットの回転のみによ る2次元的変化であることが推定できる。こ れに対して, mesolite-scolecite間の変化 は、a-b平面上での T_5O_{10} ユニットの回転 と、 β 及び c の値の変化をともなう 3 次元的 変化であると考えられる。ただし、単位胞の a-b平面に対する垂直高さ $c \sin \beta$ はほとん ど変化しない。この変化により、natrolitemesolite および mesolite-scolecite の各組 成領域では、単位胞体積 (mesolite の処理物 では1/3)は、Na比が増加するにしたがって 直線的に減少する。また、その減少率は各領 域で異なり、mesoliteの組成領域のところで 不連続となる。 さらに, scolecite の Na⁺置 換処理物の β は, mesoliteの理想組成値(Na 比にして 33.3%)のところで 90.0°に収束せず、 mesoliteより Na比が大きくなったところ(約 65%)で初めて収束している。このことは、 本処理条件下では完全な mesolite 型構造が 形成されず, この scolecite の Na⁺ 置換処理 物では, natrolite planeとscolecite planeの 秩序配列(mesolite 型構造)が不完全である ことを示唆するものと思われるが、さらに検討を要 する。

2.1.2 脱水举動

多くのゼオライトの場合,交換性陽イオンの相違 による脱水挙動の変化は DTA 曲線に敏感に反映さ れるので,天然産試料および一連の処理物について DTA 曲線を記録し,検討した。得られた DTA 曲線 の変化を図4に示す。この図の各 DTA 曲線の右側 にある横棒グラフで黒く塗りつぶした部分は,交換 性陽イオン中の Na 比を示したもので,すぐ下にそ の数値を記してある。DTA 曲線は上から下に向か って,Na 比が減少(Ca 量が増加)していく順に配 列してある。ここで,500℃以下の吸熱反応はすべ て脱水によるものであり,DTA 曲線のパターン は natrolite -mosolite および mesolite - scolecite の各組成領域間で,Na 比の変化に対して連続的に 変化していることが分かる。Natrolite, mesolite

図4 Natrolite 系の天然産試料およびNa⁺-Ca²⁺ 置換物のDTA曲線¹⁵⁾

1:新潟県橋立産,2:静岡県元小浜産, 3:新潟県黒岩産,4:長野県手塚産

および scolecite の脱水による吸熱ピークの帰属に ついては、結晶構造解析の結果と合わせてすでに明 らかにされている $^{4,8)}$ 。 すなわち、この図で natroliteの331℃の1本の大きな吸熱ピークは、Naイ オンに配位して等価な位置にある2つのH₂O分子の 脱離によるものである(図5)。また, scoleciteの 235℃および436℃の2本の吸熱ピークは、この鉱 物の脱水が2段階で進行することを示している。す なわち、 Ca イオンに配位した2種類のH_oO分子の 中、第1段階(約230℃)でCaイオンから遠くに位 置するH₂O分子(これは natrolite の2つのNa サイ トの中の1つを占めている)が脱離し、続いて第2 段階で残りの2つのH2O分子が抜ける。 Mesolite は233,268,394℃に3本の吸熱ピークを示し、3 段階で脱水する。理想的な mesolite の構造は、図 6 に示すように, natrolite planeとscolecite plane が秩序正しく配列している。このことから、第1段

図5 Natrolite (A)および scolecite (B) の結晶構造の(001)投影図⁴⁾

図6 Mesolite型結晶構造の(001)投影図⁴⁾

N, N': natrolite plane S, S': scolecite plane 階および第3段階の脱水は scolecite plane中のCa イオンに配位した2種のH₂O分子の脱離,第2段階 の脱水は natrolite plane 中のNaイオンに配位した H₂O分子の脱離によるものと考えられる。Natrolite の脱水温度は、Na 比が減少するに従って低温側へ シフトし、DTA 曲線の吸熱ピークのプロファイル はブロードとなる。また、Na 比70-45%の組成領 域では4段の脱水を示す。すでに述べたように mesolite は本質的に3段階で脱水するので、4段の 脱水は試料中に natrolite 型構造と、mesolite 型構 造が共存していることを示唆する。また、scolecite の2段の脱水による吸熱反応は、Na 比が増加する に従って、いずれも低温側へシフトする。さらに高 温側の吸熱ピークはブロードとなる。これは、天然 産試料においても同様である。

2.2 Mesolite の組成領域

Natrolite, mesolite および scolecite の組成領 域、特にmesoliteの領域については、従来より問題 とされてきた。M/(M+D)(M:mono-, D:divalent cation)の値にして0.398-0.562(Foster¹⁶⁾) または0.455-0.517 (Alberti et al.⁸⁾)などが, mesoliteの組成領域として与えられている。一方では、 0.748 - 0.796 (Foster¹⁶), 0.702 (Harada et al.¹⁷) 等の組成を有する、いわゆる"Na-rich mesolite" が記載されている。しかし、これらのほとんどが gonnardite であると言う指摘がある⁸⁾。すでに述べ たように、 natrolite-mesoliteの中間領域では、 そ れぞれのサイトのHOO分子の脱離温度にはかなりの 差があり、これが DTA 曲線上において4つの吸熱 反応として明瞭に現れる(図4)。また、次に述べる が, gonnardite 系では DTA 曲線上において 2~3 段の特徴的な脱水による吸熱反応を示す。従って, mesolite 型構造と natrolite 型構造が共存する場合 と、骨格構造の四面体鎖の Si, Al 配列が無秩序な 場合とでは、脱水挙動を調べることにより、容易に 区別できる。これまでに記載されたものの大部分が gonnardite, または natrolite と mesolite が密に共 生した試料であるとすれば、この判定に DTA また は DSC は有効な手段であると言える。

3. Gonnardite 系列

Tetranatrolite および gonnardite は,四面体鎖 の Si, Al 配列が無秩序な natrolite 型構造を示 す^{18,19)}。従って, natrolite-mesolite-scolecite 系列と同様に Na⁺→Ca²⁺ 置換による固溶体系列を

考えると、Na端成分は tetranatrolite に対応する。 この tetranatrolite は、Andersen et al.²⁰⁾によっ て"tetragonal natrolite"として記載されて以来, 多くの報告がなされたが, その後 Chen and Chao²¹⁾ の提唱により、通常"tetranatrolite"の名称が用い られるようになった。現在では, natrolite の Si, A1 配列の部分的無秩序型は, 一般的に産すること が知られている²²⁾。Mazzi et al.¹⁸⁾は, gonnardite の構造を明らかにした上で、これまでに記載されて いる tetranatrolite および gonnardite の化学組成 の分布を示し、両鉱物種間では連続した Na⁺---Ca²⁺ 置換系列のものが天然に産することを明らかにした (図7)。この点では、化学量論的に狭い組成領域に しか産しない natrolite 系列と異なる。しかし、Ca 端成分を含めて、gonnardite の他のイオン型につ いてほとんど記載例がなく、また、tetranatrolite、 gonnardite の陽イオン置換体についての報告は、 現時点では見あたらない。

化学組成領域18)

8.1 Na⁺=== Ca²⁺ 置換系列の格子定数および脱 水挙動

著者らは、天然産 gonnardite についても Na⁺ま たは Ca²⁺ 置換を行い、各端成分までの一連の組成 のものを作成し、検討を行った²⁸⁾。

3.1.1 格子定数

図8に得られた一連の置換試料の格子定数変化を 示す。Gonnarditeは、Na⁺またはCa⁸⁺置換によっ て、a, cともわずかに収縮する。とくに、Na比(K₂O \simeq 0)が100%に近づくにしたがって、aおよびcの値

は tetranatrolite の値に近づいていく。また、Cagonnardite の対称性は粉末X線回折パターンの上 では擬正方晶系であり、tetranatrolite-Ca-gonnardite の間では、対称性の低下が生じない。これらは、 上述の natrolite 系列のNa⁺=Ca²⁺置換にともなう 性質の変化と挙動が異なる。Ca-gonnardite(Ca 置換率 93.12%)の格子定数は、a=13.226(2)Å, c=6.581(6)Åで、出発物質の gonnardite のa=13.286(3)Å, c=6.651(3)Å(部分脱水相)に比 較して、単位胞体積にして約3.4%の減少を示す。

3.1.2 脱水举動

図9に,得られた Na⁺== Ca²⁺ イオン置換系列の DTA 曲線を示す。ここで図の右側の構棒グラフの 黒く塗りつぶした部分およびその下に示した数値は、 図4と同様に Na 比を示している。また、ここで現 れている 500℃以下の吸熱ピークはすべて脱水によ るものである。Tetranatroliteにおいては48,165、 301℃の, gonnardite においては 48, 195, 334℃ のそれぞれ3段の吸熱ピークが認められる。これ らの中間組成領域では、 Na 比の増大にともない、 gonnardite の高温側の2段の吸熱ピーク温度はそ れぞれ低温側ヘシフトして, tetranatroliteのピー ク温度に近づいていく。ここでピーク数の増減はな く、従ってこの変化はnatrolite-mesolite間のDTA 曲線の変化とは異なる。また、 Ca²⁺ 置換にともな い、4~5段の吸熱ピークのプロファイルが連続的 に変化することが分かる。 Na 比が減少するにした がって、約50℃の吸熱ピークは消失し、gonnar-

図9 Gonnardite系の天然産試料および gonnardite のNa⁺-Ca²⁺置換物のDTA曲線¹⁵⁾

1:Mt.St. Hilaire, Québec, Canada 産, 2:新潟県間瀬産

図 10 Tetranatrolite, gonnardite および Ca型 gonnardite の(200)回折線強 度の温度変化¹⁵⁾

dite の 195℃の吸熱ピークが高温側へシフト しながらピーク面積を増していく。ここで、 約 50℃ の吸熱反応は, paranatrolite → tetranatroliteの相変化またはgonnarditeの 部分脱水相への変化によるものと推定される。 また, gonnarditeの約330℃の吸熱ピークは、 Na 比が減少するにしたがって消失していき、 同時に約350℃の吸熱ピークが出現して、次 第にそのピーク面積が増大していく。 Na 比 にして35%以下の組成領域では、さらに約 310, 370℃ に小さな吸熱ピークが認められ る。Ca-gonnarditeは、本質的に 222、350 ℃の2段の脱水反応を示し、また1段目と2 段目の脱水量が 1:2 であることは scolecite の場合と同様である。ただし、いずれのピー ク温度もより低温である点で scolecite と異 なる。 さらに 304, 376℃ に小さな吸熱反応 が認められる。それが何に起因するかは、現 在のところ不明である。図10に、tetranatrolite, gonnardite および Ca-gonnardite の(200)回折ピークの,加熱による強度 変化を示す。ただし, tetranatrolite のみ脱 水後, 無水相が生成し、約600℃で非晶質化 するが、この図では省略してある。他の2試 料は、いずれも最も高温での脱水にともない X線的に非晶質化する。これらの非晶質化温

度(tetranatrolite, 600℃, gonnardite, 430℃, Ca-gonnardite, 360℃)はいずれも, natrolite, mesolite, scolecite の非晶質化温度(それぞれ約 800, 500, 450℃)に比較して, かなり低い。 ここ で、Ca-gonnarditeの非晶質化温度は約360℃と、 gonnardite より約70℃低いが、 これは natrolite 系列における mesolite と scolecite の関係と同様で ある。また、 tetranatrolite では回折強度が2段階 に増大するが、低温側の増大は部分脱水による paranatrolite → tetranatrolite 相変化によるもの である。また、X線回折パターンのシミュレーショ ンを行った結果より,高温側(約250-300℃)の著 しい強度増大は、孔路中の水分子の脱離によると考 えられる。また、この温度領域で格子の収縮がわず かであることから、脱水反応がある程度進行した後 に格子が収縮、非晶質化すると考えられる。これは natroliteの場合にも認められる¹⁵⁾。

以上の事実を総合して, gonnardite のCa 端成分 は,将来天然に得られる可能性が十分にあると言え る。

4. K置換型の諸性質²⁴⁾

天然産の fibrous zeolites group に属する鉱物 種は, K⁺ イオンを選択的に置換するにも拘らず, K-rich 型はほとんど記載されていない。例えば, natrolite においては,酸素原子 80 個に対して, K 原子は平均 0.01-0.03 個程度である²⁰。そこで,著 者らは, fibrous zeolites のうち, natrolite, tetranatrolite, gonnardite の3種について K⁺置 換処理を行い,得られた置換物について検討した²⁴⁾。 次にこの結果を紹介する。

4.1 格子定数および脱水挙動

それぞれの K⁺ 置換試料の化学組成は、湿式分析 および EPMA (EDS) により決定した。その結果、 natrolite および tetranatrolite、gonnardite の各 々について、K⁺ 置換率 (K₂O/(Na₂O + CaO + K₂O)モル%)で98.1%、86.2%、92.0%までの置換 試料が得られた。これらの K⁺ 置換物の格子定数は それぞれ、K-natrolite (a=19.278 (5)Å、b= 19.737 (5)Å、c=6.484 (2)Å)、K-tetranatrolite (a=13.662 (3)Å、c=6.551 (7)Å)、Kgonnardite (a=13.683 (4)Å、c=6.527 (8)Å)で あった。従って、K⁺置換により各鉱物種の格子定 数は、natrolite の場合、a、bが約 5.5%伸張、cが 約 1.6%収縮、tetranatrolite および gonnardite の 場合, a が約 3.8% 伸張, c が約 0.9% 収縮すること が分かった。図11に天然産試料および各K⁺置換体 のDTA曲線を示す。いずれのK⁺置換物の場合も、 250℃以下の低い温度で脱水が終了することが分か る。また TG 曲線で、K-natrolite は 100℃までに ゆるやかな脱水がある。さらに昇温すると、1000 ℃まで大きな変化は認められない。また, natrolite で認められる、 517℃での α -metanatrolite $\rightarrow \beta$ metanatrolite の相転移による、吸熱反応も認めら れない。K-tetranatroliteのDTA曲線は、124、 196、224℃の3段の脱水を示す。また、K-gonnardite も同様に、約120℃のブロードな吸熱反応を含 めて、185、207℃の3段の脱水を示すが、これに 対応する水分子のサイトは決定されていない。また、 高温粉末X線回折により、いずれのK⁺置換物も 250℃以下で脱水相に変化することが分かった。ま た, natrolite, tetranatrolite, gonardite の非晶質 化温度は、それぞれ約1100、1150、1150℃であり、 高い熱安定性を示す(図12)。

4.2 K-natroliteの結晶構造^{24,26)}

天然産 fibrous zeolitesは通常, 微細な結晶の集 合体で得られ,また陽イオン置換処理試料も粉体で 得られることが多い。従って,単結晶法により結晶 構造解析を行うことが困難な場合がほとんどである。 先に著者らは, Rietveld 法により natrolite および K-natrolite の各結晶構造パラメータの精密化を行

*:K⁺置換率

った²⁶⁾。 これによると, natrolite とそのK置換型 では, 陽イオンと水分子のサイト位置が逆転してお り, K置換型ではKイオンは c 軸に垂直な方向にの びる酸素 8 員環付近に位置する。このため, 十分大 きなイオン半径をもつKイオンが骨格構造の四面体 鎖を distort しにくくさせる。これが, 前述の Knatrolite が高い熱安定性を示す原因と考えられる。 しかし, 他の fibrous zeolites の場合も同様に解 釈できるか否かは, さらに検討する必要がある。

5. おわりに

Fibrous zeolites group のうち, thomsonite お よび edingtonite については、本稿ではふれなかっ た。これら天然産試料の諸性質については、Reeuwijk²⁷⁾, Gottardi and Galli⁴⁾などがまとめている。 しかし、いずれの鉱物種も、その化学組成領域は限 られている。そのうち, thomsonite については, Na またはCa 端成分の性質はよく知られておらず, さらに一連のSi/Al比のものについて、より詳細に 調べる必要がある。また, edingtonite においても, Ba²⁺ 以外のイオン型で同じ四面体鎖構造のものは 知られていない。Edingtonite 型構造の安定性には、 Ba²⁺ イオンの存在が大きく寄与していると推定さ れる。さらに、Alberti and Gottardi⁵⁾が予測した、 他の可能な骨格構造をもつ fibrous zeolites の天然 における産出および合成の可能性についても、今後 の研究に期待するところが大きい。

田大学教育学部技術職員木ノ内嗣郎氏の多大の御協 力を得た。ここに厚く御礼申し上げる。

参考文献

- Meier, W. M.: Molecular Sieves, Soc. Chem. Industry London, 10-27 (1968)
- 2) Breck, D. W.: Zeolite Molecular Sieves, Wiley, New York, 29-185 (1974)
- 3) Barrer, R. M.: Hydrothermal Chemistry of Zeolites, Academic Press, London, 8-20 (1982)
- Gottardi, G. and Galli, E.: Natural Zeolites, Springer-Verlag, Berlin, 1–75 (1985)
- Alberti, A. and Gottardi, G.: Neues Jahrb. Miner. Monatsh, 1975, 395-411 (1975)
- 6) Smith, J. V.: Z. Kristallogr., 165, 191-198 (1983)
- 7) Chao, G. Y.: Can. Miner., 18, 85-88 (1980)
- 8) Alberti, A., Pongiluppi, D. and Vezzalini, G.: Neues Jahrb. Miner. Abh., 143, 231–248 (1982)
- 9) Hey, M. H.: Miner. Mag., 23, 243-249 (1932)
- 10) Hey, M. H.: Miner. Mag., 23, 421-447 (1933)
- 11) Hey, M. H.: Miner. Mag., 24, 227-253 (1936)
- 12) Belitskiy, I. A. and Gubuda, S. P.: Chem. Erde., 27, 79-90 (1968)
- 13) Belitskiy, I. A.: Zap. Vses. Miner. Obshchest, 101, 52-61 (1972)
- 14) Belitskiy, I. A. and Fedorov, A.: Eksperiment. Issled Miner. Akad. Nauk. USSR Inst. Geol. Geofiz. Novosibirsk., 46–54 (1976)
- 15) Yamazaki, A. and Otsuka, R.: Thermochim. Acta に投稿準備中
- 16) Foster, M. D.: US Geol. Surv. Prof. Pap., 504-D,
 E: D1-E10 (1965)
- 17) Harada, K., Hara, M. and Nakao, K.: Miner. J., 5, 309-320 (1968)
- 18) Mazzi, F., Larsen, A. O., Gottardi, G. and Galli,
 E.: Neues Jahrb. Miner. Monatsh, 1986, 219-228 (1986)
- 19) Mikheeva, M. G., Pushcharovskii, D. Yu., Khomyakov, A. P. and Yamnova, N. A.: Kristallografiya, 31, 434-439 (1986)
- 20) Krogh Andersen, E., Danø, M. and Petersen, O. V.: Medd. Grøland, 181, 10, 1-19 (1969)
- 21) Chen, T. T. and Chao, G. Y.: Can. Miner., 18, 77-84 (1980)
- 22) Alberti, A. and Vezzalini, G.: Acta Crystallogr., B37, 781-788 (1981)
- 23) 山崎淳司•大塚良平:日本化学会誌,投稿中
- 24) 山崎淳司·大塚良平:粘土科学, 投稿中
- 25) Yamazaki, A. and Otsuka, R.: Thermochim. Acta, 109, 237-242 (1986)
- 26) 山崎淳司・神岡邦和・松本寛人・大塚良平:早稲田大 学理工研報告,118,40-44(1987)
- 27) Van Reeuwijk, L. P.: The Thermal Dehydration of Natural Zeolites, Meded Landbouwhogesch, Wageningen, 74-9, 1-88 (1974)