《解説》

固体¹³C NMR による MOF 中の CO₂吸着・拡散ダイナミクスの解析

栗原拓也

近年、MOFをはじめとした多孔性材料を用いた、温室効果ガスであるCO₂の分離・回収の研究が盛 んに進められている。CO₂吸着材料の実用化においては、より機能性の優れた材料の開発や実際に使 用される環境を想定した応用研究に加え、CO₂の吸着・拡散が材料中でどのように生じ、それがどう ガス分離につながるのかを理解することを通じて、構造設計の指針や適切な使用条件を明らかにする ことも重要である。本稿では、分子運動の解析を得意とする分光法である固体NMRを用いた、MOF 中におけるCO₂の吸着・拡散ダイナミクスの解析について解説する。はじめに、CO₂のダイナミクス 解析の基礎となる固体¹³C NMR法の理論的背景および分子運動の測定法について、できるだけ MOF に 限定せず多孔性材料全般に通じるよう説明する。次にそれらを踏まえ、実際に MOF 中に吸着したCO₂ の運動状態を解析した例を紹介する。

キーワード:固体¹³C NMR, CO₂,金属-有機構造体,分子運動,吸着,拡散

1. 序論

温室効果ガスの一種であるCO₂の排出量削減は, 現代社会の大きな課題の一つである。また,近年で はカーボンニュートラルの実現に向けてCO₂の回 収,再利用への関心が高まりつつあり,それに伴い, 多孔性材料を用いたCO₂の分離に関する研究が注目 されている。具体的には,ゼオライトや金属-有機 構造体 (Metal-Organic Framework; MOF,もしくは Porous Coordination Polymer; PCP)をはじめとした 様々な多孔性材料を対象として,高いCO₂吸着能を 持つ構造の開発が行われ,そのガス吸着特性に応じ て圧力スイング法やガス透過法など様々な手法によ るCO₂分離への応用が検討されている。

こうした材料開発~応用の研究プロセスにおいて は、CO₂の吸着状態の解析を通じて、材料が高い(も しくは低い)CO₂吸着・分離能を示すメカニズムを 明らかにし、その結果を材料設計へとフィードバッ クしたり、その材料を利用すべき環境や条件を把握

〒920-1192 石川県金沢市角間町自然科学5号館 E-mail: kurihara@se.kanazawa-u.ac.jp

Copyright © 2023 Japan Zeolite Association All Rights Reserved.

したりすることが重要となる。材料中のCO2吸着状 態を解析する主な手法としては、X線回折法(X-rav diffraction; XRD) および中性子回折法が挙げられる。 これらの手法は吸着したCO2も含めた結晶構造を明 らかにできるため、材料中の吸着サイトやCO2の吸 着状態を解析する上で有効である¹⁻⁵⁾。加えて、赤外 分光法や計算科学手法などを用いた解析も、時にX 線・中性子回折と組み合わせつつ行われている⁶⁻¹⁰⁾。 また拡散係数の測定には、中性子準弾性散乱法など が用いられている¹¹⁻¹⁴⁾。そして、CO2の吸着・拡散 挙動を調べるにあたっては、分子運動の解析を得意 とする固体核磁気共鳴 (Nuclear Magnetic Resonance; NMR) 分光法が強力なツールとなる^{15,16)}。X線・中 性子回折法が静的・平均的な CO2 の吸着状態を明ら かにするのに対し、固体NMRは、動的な吸着状態 を詳細に観測できることが大きな特徴である。しか しながら、固体NMRがCO2吸着状態の有効な解析 手法であることは、あまり一般に認知されていない のが現状であろう。そこで本稿では、固体¹³C NMR による材料の細孔中に吸着した CO₂のダイナミクス 解析について、その原理と方法について解説すると ともに、盛んに研究される多孔性材料の一つである MOFを対象とした実際の研究例を紹介する。

受理日:2023年7月27日

金沢大学理工研究域物質化学系

2. 固体NMRによるCO2の分子運動の測定・解析法

細孔内における CO₂の分子運動は, 主に①吸着サ イトにおけるローカルな運動, ②細孔内の拡散運 動, の二つに分けられる。前者は具体的に, 吸着サ イト上における異方的な回転運動, および吸着サイ ト間のホッピング運動が存在する。これらの運動に は MOF-CO₂間や CO₂-CO₂間の相互作用, また細孔 内の構造が反映され, 吸着メカニズムに関する情報 を我々に与える。一方, 後者の細孔内拡散は吸着サ イト間のホッピング運動が長距離にわたって生じた ものと解釈することができる。その拡散係数はやは り吸着の強さや細孔径などと強く相関し, ガス透過 分離法においては分離能を左右するパラメーターと なる。本章では, こうした CO₂の運動を固体¹³C NMRによってどのように観測するのかについて説 明する。

2.1 固体¹³C NMR測定の基礎

2.1.1 化学シフト相互作用

NMRは、静磁場中において原子核のスピンを観 測する分光法である。核スピンは磁場中において. ゼーマン相互作用によってエネルギー状態の縮退が 解けて分裂が生じ、その分裂幅に相当するエネル ギーを信号として観測する。実際にはゼーマン相互 作用以外にも、核スピンの周囲の環境によって大き さが変わる相互作用がいくつか存在し、これらが NMR信号に構造の情報を反映したピーク位置や線 形を与える。固体¹³C NMRの場合,信号の位置や 線形を主に決めるのは、核スピンとその周りの電子 が作る磁場との相互作用である化学シフト相互作用 である。この化学シフト相互作用は、等方的な成分 と異方性を持った成分から構成される。前者は等方 化学シフトと呼ばれ、信号の現れる位置を決定す る。一方,後者は化学シフト異方性 (Chemical Shift Anisotropy; CSA)と呼ばれ、NMRマグネットの静磁 場に対する分子の向きによってその大きさが変化す る。溶液NMRの場合は溶媒中のランダムな分子運 動で後者が平均化され、前者によってピークの位置 のみが与えられる。一方. 固体の粉末試料では分 子・結晶が磁場に対して様々な方向を向くため. そ の方向に応じた様々な位置に信号が現れる。結果と して、スペクトルにはそれらをすべて合算した広幅 な信号が観測され、これは粉末パターンと呼ばれ る。

NMRの核スピン相互作用の大きさはテンソル量 として表され、相互作用テンソルの主軸座標系にお いては、3×3の対角行列の対角成分に現れる三つ の主値によってその大きさが決定づけられる。化学 シフト相互作用では三つの主値 ($\delta_{XX}, \delta_{YY}, \delta_{ZZ}$)によっ て、等方化学シフト値 δ_{iso} , CSAの大きさ δ_{aniso} , お よび異方性の軸対称性を表す非対称性パラメーター η が $|\delta_{ZZ} - \delta_{iso}| \geq |\delta_{XY} - \delta_{iso}| > |\delta_{YY} - \delta_{iso}|$ の条件の下,次の ように定義される。

$$\delta_{\rm iso} = \frac{1}{3} (\delta_{XX} + \delta_{YY} + \delta_{ZZ}), \quad \delta_{\rm aniso} = \delta_{ZZ} - \delta_{\rm iso},$$
$$\eta = \frac{\delta_{YY} - \delta_{XX}}{\delta_{\rm aniso}} \tag{1}$$

これらはスペクトルにおいて,図1aに示すような 特徴的な線形を与える。¹³C核の場合,有機分子で は主に結合する原子の種類によって¹³C核を取り巻 く電子雲の形状や密度が変化するために,化学シフ トテンソルの主値が変化する。例えば水素三つと結 合したメチル基と酸素二つと結合したカルボキシ基 では,等方化学シフト値およびCSAパラメーター はともに異なる値を示し,その結果スペクトル上に おいて異なるピーク位置および粉末パターンの形状

図1. (a) 化学シフト異方性 (CSA) の影響を受けた粉末 試料のNMR 信号 (粉末パターン). $\delta_{iso} = 125 \text{ ppm}$ および $|\delta_{aniso}| = 223 \text{ ppm}$ とし、いくつかの η の値に 対しスペクトルを計算した.化学シフトテンソ ルの主値 ($\delta_{XX}, \delta_{YY}, \delta_{ZZ}$)を対応する粉末パターンの 角および肩の位置に示している.(b) マジック角 回転 (MAS) 下における NMR スペクトル. $\delta_{iso} = 125 \text{ ppm}, \delta_{aniso} = -223 \text{ ppm}, \eta = 0$ とし、MAS 速度 を変えながら計算した. を与える¹⁷⁾。特にピーク位置については,官能基 や化学種によってスペクトル上のどの範囲に信号が 現れるかが大方決まっており,構造解析を行う上で の重要な情報となっている。

補足として,CSAパラメーターには上述のもの とは異なる定義もあるため,文献などを参照する際 は注意が必要である。また,NMRでは相互作用の 大きさが周波数単位で表されるが,化学シフト相互 作用の大きさは静磁場の強さに比例して変化する。 そのため,数値を磁場強度に依存せずに取り扱える よう,化学シフト相互作用の大きさは基準物質の ピーク位置で決められた共鳴周波数で割って得られ るppm単位の相対的な値によって示される。

2.1.2 マジック角回転法

固体粉末試料の広幅な信号に対し. 異方性相互作 用を平均化し信号を先鋭化する手法としては、試料 管を静磁場に対して54.7°傾けた状態で高速回転する マジック角回転法 (Magic Angle Spinning; MAS) が用 いられる。MAS法は現代の固体高分解能 NMR にお ける重要なテクニックの一つであり、専用のMAS NMRプローブおよび回転試料管とともに一般に広 く使用されている。図1bに示すように、CSAによ る信号の線幅より十分に速い MAS 速度を用いれば、 異方性を消去し、溶液NMRのような等方化学シフ トのみによる細い信号を得ることができる。MAS 速度の周波数が線幅よりも小さい場合。等方化学シ フトによるピークに加え, MAS 周波数に応じた位 置にスピニングサイドバンドと呼ばれるサブピーク が現れ、結果としてスパイク状の信号を得る。この サイドバンド信号の強度比は,静止試料の粉末パ ターンの線形と同様, CSAの大きさに応じて変化 する。したがって、サイドバンドパターンからCSA パラメーターを抽出することが可能である。 2.2 CO2のローカル運動の測定・解析

-2.2.1 化学シフト異方性による線形の解析

CO₂は常温常圧で気体であるため、その¹³C信号 は、CSAがランダムな分子運動で平均化された等 方化学シフトのみによるシャープなピークとなる。 一方、195 K以下における固体状態ではCSAによる粉 末パターンが観測され、そのパラメーターは δ_{aniso} = -223 ppm, η =0と報告されている¹⁸⁾。吸着状態に おいては、吸着サイトとの相互作用や細孔内の立体 障害を受けて分子運動が異方的に制限され、¹³C信 号は気体分子でありながらCSAの影響を受けた粉末 パターンとなる。この線形を解析することにより, 細孔中のCO₂の動的な吸着状態を明らかにすること ができる。CO₂は吸着サイト上において一軸回転運 動を行うことが知られ,運動速度を10⁶ Hz以上と仮 定したとき,回転軸に対する傾きの角度θに応じて 見かけのCSAの大きさδ_{aniso}が次式のようにスケー ルされる。

$$\delta'_{\text{aniso}} = \frac{1}{2} (3\cos^2\theta - 1)\delta^0_{\text{aniso}} \tag{2}$$

 δ_{aniso}^0 は先述の固体のCO₂のCSA値である。室温付 近およびより高温においては、運動速度は10⁶ Hz以 上としてほぼ問題ないであろう。 θ の値に応じた粉 末パターンの変化の様子を図2aに例示した。式(2) を用いることで、吸着したCO₂の粉末パターンの線 形より得られるCSAの大きさ δ_{aniso} より、回転運動 の傾きの角度 θ を明らかにできる。また2.1.2で述べ たように、遅いMAS速度の下で現れるサイドバン ドパターンからも δ_{aniso} 、そして θ を得ることが可能 である。 δ_{aniso} を得るための線形解析は、測定データ に対するピークフィッティングにより可能である。 これには固体NMRスペクトルの解析に対応した専 用のソフトウェアが必要であり、筆者はフリーソフ

図2. (a) 様々な傾き角 θ にて一軸回転運動を行うCO₂, および (b) 回転軸の向きの変化を伴う θ =15°の一 軸回転運動を行うCO₂の¹³C CSA による粉末パター ン. δ_{iso} =125 ppm, δ_{miso} = -223 ppm, η =0とし, ま た後者は回転軸の向き φ で定義される2つのサイ ト間のホッピングを想定してスペクトルを計算し た. トである ssNaKe¹⁹⁾ を利用している。もしくは、ス ペクトルシミュレーションによる解析も可能であ る。この場合は δ_{aniso} を得るのではなく、 θ の値を変 えながらスペクトルを計算し、実験結果を再現する θ を直接探す作業になる。図2aは実際に固体CO₂の CSA値(-223 ppm)を用いて様々な θ における回転 運動下のスペクトルを計算することで得ている。こ れもやはり専用のソフトウェアが必要であり、 フリーソフトであればMATLAB上で動作する EXPRESS²⁰⁾が使用可能である。

先述の通り、CO₂は回転運動に加えて、吸着サイ ト間をホッピング運動している。このホッピングに 伴って結晶構造中における回転運動の軸の向きが変 化する場合、回転軸に対する傾きθに加えて、回転 軸の角度変化の影響も粉末パターンに現れる。その 結果、信号は非対称性パラメーターη≠0の粉末パ ターンのような線形となる。一例を図2bに示した。 このような場合、フィッティングで得られる見かけ のCSAパラメーターからθおよび回転軸の角度変化 の大きさを求めることはできず、分子運動を考慮し たスペクトルシミュレーションによる解析が必要と なる。

なお、本稿では化学シフト相互作用のみによって 線形が決まる場合を取り扱うが、吸着サイト付近に 常磁性を持つ原子がある場合、その電子スピンと ¹³C核との相互作用によっても信号の位置や線形が 変化するため、解析が煩雑になる。そのため MOF では、Zn²⁺など反磁性金属イオンからなる構造に 対して NMR 測定・解析が行われる場合が多い。

2.2.2 等方化学シフト値を用いた解析

細孔表面に物理吸着したCO₂は、吸着サイトとの 静電的相互作用によって¹³C信号の等方化学シフト 値に変化が生じ、そのピーク位置は気体状態と比べ てわずかに低周波数(低ppm)側にシフトすること が知られている。気体のピーク位置が125 ppm程度 である場合、吸着したCO₂の等方化学シフトによる ピークの観測範囲は、おおよそ122-125 ppmであ る。等方化学シフト値は、静止試料の広幅な粉末パ ターンを解析するより、MASで先鋭化した信号か ら直接取得する方が高精度に得られやすい。ピーク の位置は吸着サイトとの相互作用の強さにある程度 依存すると考えられるが、MOFにおいては両者の 関係性を系統的に調べ、ピーク位置から相互作用の 強さを議論した報告例はなく,等方化学シフトの値 そのものから吸着状態を評価することは現状難し い。あるいは、量子化学計算による化学シフトの予 測と組み合わせることが有効かもしれない。なお. 溶液¹³C NMRでは一般に標準物質であるテトラメ チルシランの信号をスペクトルの0ppmと定める が、固体¹³C NMRではアダマンタンやグリシンな どの2次標準物質を用いて化学シフト値を校正する ことが多い。どの2次標準物質のどのピークをテト ラメチルシランに対して何 ppm と設定するかは文 献によって少しずつ差があるため、化学シフト値の 校正や文献との比較を行う際は注意を要する。また 試料中に常磁性原子が存在する場合

先述の常磁性 相互作用によって吸着したCO2のピークが気体より 高周波数側にシフトしうるため. こちらも注意が必 要である^{21,22)}。

細孔中に異なる複数の吸着サイトが存在し, CO₂ がそれらの間をNMRの信号観測の時間スケール (¹³C MAS NMRの場合ms程度)より十分速く行き来 している場合,ピークはそれぞれの吸着サイトに対 応した位置ではなく,それらを平均化した位置に観 測される。この平均的なピーク位置は,各吸着サイ トへの吸着量の比で重みづけされる。そのため,吸 着等温線を参考にいくつかの圧力で測定を行うこと で,ピーク位置の圧力依存性より複数ある吸着サイ トがどう埋まっていくのかを解析することができ る。

2.2.3 スピン-格子緩和時間を用いた解析

試料を静磁場中に入れた直後やNMR信号の観測 直後から磁化,つまりNMR信号が熱平衡状態へと 向かう過程はスピン-格子緩和と呼ばれる。磁化*M* が熱平衡状態*M*₀に向かって回復する様子は,時定 数*T*₁を用いて

$$M(t) = M_0 \left\{ 1 - \exp\left(-\frac{t}{T_1}\right) \right\}$$
(3)

と記述される。実験的には主に飽和回復法や反転回 復法によって測定され、これらは現代のNMR分光 計には標準的に備わっている測定法である。NMR の緩和は核スピン相互作用によって核が感じる局所 磁場が分子運動で揺らぐことによって生じ、局所磁 場の揺らぎの速度、すなわち運動の速度に応じて緩 和時間は変化する。そのため、試料温度を変化させ 得られた T_1 の温度依存性を解析することでその運動性を調べることができる。 CO_2 の¹³C核では化学シフト相互作用が緩和に寄与し、緩和速度 $1/T_1^{CSA}$ は BPP式と呼ばれる次の式で表される²³⁾。

$$\frac{1}{T_{\rm l}^{\rm CSA}} = C \frac{\tau_c}{1 + \omega_{\rm 0C}^2 \tau_c^2} \tag{4}$$

CはCSAの大きさと運動モードに依存した定数。 woor は¹³C核の共鳴周波数であり使用するNMR装置の磁 場強度による。τ。は運動の相関時間, つまり運動速 度の逆数であり、大抵アレニウス式 $\tau_c = \tau_0 \exp(E_a/RT)$ で記述される。式(4)は温度の逆数に対して図3の ような曲線となり、実験で得た T_1 に対して C, τ_0, E_a を変数としてフィッティングを行い解析する。これ より、運動の活性化エネルギーEaと運動速度1/tcが 求められる。詳細は説明しないが. Cから運動モー ドを解析することも可能である。なお、T1の値は $\omega_{0CT_{c}} \sim 1$ において図3の T_{1} 曲線を特徴づける極小値 を取るが、運動の速度や実験条件によっては極小値 を観測できないことがある。この場合,式(4)を解 析に使うことは難しいが、運動の速度1/なが共鳴周 波数 ω_{0C} より十分遅い領域では、 $\omega_{0C}\tau_{c} \gg 1$ より式(4) を近似した

$$\frac{1}{T_{\rm l}^{\rm CSA}} \sim \frac{C}{\omega_{\rm 0C}^2} \tau_c^{-1} \tag{5}$$

逆に運動が共鳴周波数 ω_{0C} より十分速い領域では、 $\omega_{0C}\tau_{c}$ ≪1より

図3. スピン-格子緩和時間 T₁の温度依存性のlog プロット. 曲線の極小値より低温側および高温側は単 一の指数関数に近似でき,その傾きは活性化エ ネルギーE_aに相当する.

$$\frac{1}{T_1^{\text{CSA}}} \sim C \tau_C \tag{6}$$

によって解析を行うことができる。ただしこれらの 式によるフィッティングでは、Cとtoはそれらの積 としてしか得られず、したがって明らかになるのは *E*aのみである。

MOFのように細孔中に水素原子が多く存在する 場合,その¹H核とCO₂の¹³C核との間に,大きさが 核間距離に依存する双極子相互作用が働く。化学シ フト相互作用と同様に双極子相互作用も緩和に影響 し,その緩和速度1/T^{dip}は

$$\frac{1}{T_{1}^{\text{dip}}} = D \begin{cases} \frac{\tau_{c}}{1 + (\omega_{0H} - \omega_{0C})^{2} \tau_{c}^{2}} + \frac{3\tau_{c}}{1 + \omega_{0C}^{2} \tau_{c}^{2}} \\ + \frac{6\tau_{c}}{1 + (\omega_{0H} + \omega_{0C})^{2} \tau_{c}^{2}} \end{cases}$$
(7)

と与えられる²³⁾。Dは双極子相互作用の大きさと CO₂の運動性に依存し、 ω_{0H} は¹H核の共鳴周波数で ある。またCO₂の¹³C核の T_1 は、これら二つの相互 作用による緩和速度の和 $(1/T_1^{CSA}) + (1/T_1^{dip})$ で与え られる。なお、 T_1 の極小が観測できない場合は、双 極子相互作用の寄与の有無にかかわらず、やはり式 (5,6)の近似式で解析することになる。

2.3 CO₂の拡散運動の測定・解析

2.3.1 拡散NMR法

CO₂を含む様々なガス分子やイオン,溶液中の分 子などの拡散係数が拡散NMR法によって測定され ている。測定は、NMRマグネットの静磁場に磁場 勾配を生じさせて行われる。スペクトルにおける NMR信号の位置を主に決めるゼーマン相互作用お よび化学シフト相互作用の大きさは、磁場強度に比 例する。そのため、磁場勾配があると試料位置に よって磁場強度が変化し、それに応じて信号の位置 に違いが生じる。試料中で分子やイオンが動き回る 場合,移動距離に応じて信号の位置が変化するの で、これを利用することで拡散係数を解析すること ができる。非常に強力な測定法だが、磁場勾配をか けられる専用のNMR プローブおよび磁場勾配パル スを用いた特殊な測定シークエンスが必要となる。 測定・解析法の詳しい説明はここでは割愛するが, 詳細を知りたい場合は例えば「竹腰清乃理著:磁気 共鳴-NMR-核スピンの分光学-」の10.6節に測定法 についてコンパクトにわかりやすく書かれている。 また,筑波大学の早水先生がhttps://diffusion-nmr.jp/ にて主にLiイオンの拡散NMR測定に関する詳細な 解説を公開されており,こちらも非常に参考になる であろう。ちなみにMOF 細孔中におけるCO₂の拡 散係数は,細孔の構造に依存するものの,一般的に は10⁻⁸-10⁻¹⁰ m²/s程度と拡散NMR法により測定され ている²⁴⁻²⁹⁾。

2.3.2 交差分極法

交差分極法 (Cross Polarization; CP) は, 核スピン 間の双極子相互作用を利用してある核から別の核に 磁化を移動し観測する方法である。固体の有機物の ¹³C測定においては、周囲に多く存在し測定感度の よい¹H核から磁化を移すことで、¹³C核の信号強度 を増幅し、測定効率を大幅に向上できる。そのため、 MAS法とともに現代の固体NMRの重要なテクニッ クの一つとなっている。緩和の項で説明したように. MOF細孔中ではCO₂の¹³C核が周囲の¹H核と双極 子相互作用を形成する。しかしながら、双極子相互 作用の大きさは核間距離の3乗に反比例し、吸着し たCO₂は拡散によって周囲の¹Hと距離が離れて双 極子相互作用が弱まってしまう。そのため、基本的 にはCP法で信号を検出することはできない。筆者 の経験的に、先述の一般的な拡散係数を示すMOF 中のCO₂に対しては、室温付近およびそれ以上の温 度下ではCP法が効かない。まれに、細孔内部の立 体障害や吸着サイトとの強い相互作用などによって CO₂の拡散速度が遅く,CP法でCO₂の¹³C信号を観 測できる場合がある³⁰⁻³³⁾。拡散速度を調べる測定法 ではないため、拡散NMRのように拡散係数を求め ることはできないが、拡散係数が一般的な値程度か それより小さいかの判断など、定性的な解析は可能 である。

2.4 同位体核種濃縮CO2ガスの使用

¹³C核の天然存在比は1%程度であり,残りの99% はすべてNMRで観測できない¹²C核である。その ため,特にCO₂の吸着量が少ない圧力条件下や,信 号が広幅な静止状態では,信号を観測するためのス ペクトルの積算に数時間から場合によっては1日以 上を要することが予想される。信号の感度向上のた め,費用はかかるが¹³C同位体濃縮したCO₂ガスを 利用することが望ましい。なお,¹⁷O同位体濃縮ガ スを用いれば固体¹⁷O NMRによる測定・解析も可能 であり、そのような例も報告されている³⁴⁾。本稿で は解説しないが、¹⁷O核は四極子相互作用も持つた め、化学シフト相互作用と組み合わせることでより 詳細な運動状態の解析が可能となる。

2.5 CO2雰囲気下測定のための試料管準備

CO₂を吸着した試料の固体NMR測定は, 試料管内 に試料とCO₂ガスを入れた状態で行われる。一般的 な固体NMRの回転試料管は気密性に乏しいため, 測定には何らかの工夫が必要となる。気密性を高め た特殊な試料管のキャップも売られており,例えば CO₂を充填したグローブボックス中などで試料管に 取り付けることで, 試料管内に試料とCO₂を閉じ込 めることができる。しかしこの場合,ガスの使用量 が多いため同位体濃縮ガスは使用できず, また圧力 も大気圧に限られる。そこで本節では, CO₂雰囲気 下で測定を行うための試料管準備の方法を紹介する。 2.5.1 ガラス管の使用

CO₂を含む特殊雰囲気下における固体NMR測定 で一般的に行われるのが,試料を詰め任意の圧力の ガスを充填したガラス管をガスバーナーで焼き切っ て封じる方法である。MOFにおいては,吸着した CO₂の固体NMR測定のほとんどがこの方法で行わ れている。ガラス管の封管には慣れが必要だが,静 止試料の測定はこれで問題なく行うことができる。 ただし,MASを行いたい場合,封管したガラス管 が回転試料管に入るため,回転による遠心力でガラ ス管が破損するリスクや,ガラス管の形状によって は回転が不安定になり試料管が破損するリスクがあ る。

NMR装置外部でガスボンベに接続した単結晶サ ファイア製の試料管をNMRプローブ中に設置する ことで、測定環境下で試料に様々なガス圧を印加す るin situ測定を行った例が報告されている^{35,36)}。こ のような装置は筆者が知る限り市販されておらず、 自作が必要となるが、一つの試料に対して連続的に ガス圧を変化できる点は大きなメリットである。先 行研究においてはCO₂を大気圧以下~約10気圧、 Xeでは20気圧近くまで変化させ、固体¹³Cおよび ¹²⁹Xe NMR測定を行っている。ガラス管で同様の装 置を作製することで、サファイアと比べて耐圧性は 低下するものの、様々なガス圧力下で測定を行う場 合には有効に運用できると期待される。ガラス管で 作製した装置でex situ測定を行った例も報告されて いる³⁷⁾。

2.5.2 特殊な回転試料管の作製

市販の回転試料管の規格を基に、Oリングの付い たスクリュー式キャップを備えた高気密性の回転試 料管を設計した報告がある³⁸⁾。筆者らはこの報告 を参考に、図4に示すような気密性回転試料管を設 計・作製し、更に任意の圧力のガス雰囲気下で試料 管のキャップを開閉できるガス配管を開発すること で、CO2雰囲気下における MOFの¹³C MAS NMR 測 定を行っている^{33,39)}。これまでに10気圧程度まで は漏れなくCO2を封入できており、ガラス管と比べ てMASによる高感度・高分解能測定が容易である 点や、1度試料管に詰めた試料に対し様々なガス圧 を印加できる点などから、利便性の高い手法と言え る。

3. MOF中のCO2のダイナミクス解析の実際

MOFは、金属イオンと配位子の配位結合から形 成される多次元的な骨格を持った多孔性材料であ る。用いる金属種と配位子の組み合わせによって多 彩な構造が合成でき、また配位子への置換基の導入 などによって細孔中に立体障害や新たな吸着サイト を導入可能といった特徴を持つ。こうした構造の設 計性の高さから、これまで数万種類のMOFが作製 され、その吸着特性が盛んに研究されている。固体 NMRはMOFの局所構造やゲスト分子の吸着状態の 解析にしばしば用いられてきたが、吸着したCO₂の ダイナミクスが固体¹³C NMR によって解析される ようになったのはここ10年ほどであり,報告され ている文献も筆者が知る限り30報程度とそれほど 多くはない。しかしながら,その多くが固体NMR による解析特有のCO₂の吸着状態の情報を得ること に成功している。以下では,代表的ないくつかの論 文について取り上げ,解説する。

3.1 CO2のローカル運動

固体¹³C NMRによって MOF に吸着した CO₂の運 動性を解析する試みは、2012年にU.C. Berkeleyの Reimer グループにより初めて行われた⁴⁰⁾。用いられ たのはMOF-74と呼ばれるハニカム型構造の1次元 細孔を有する MOF (図5a) であり、化学的安定性の 高さなどから盛んに研究されている。Reimerらは MOF-74中のCO₂に対し.¹³C CSA による粉末パター ンを解析することで,吸着状態のCO2が一軸回転運 動を行うことを初めて提唱した。回転運動の傾きの 角度θは~60-70°程度の範囲であり、温度が上昇す るとθが小さくなることや、また吸着量によっても θ が変化することを示した(図 5b. c)。また.¹³C T₁ 緩和時間の温度変化の解析よりEaを求め、吸着量 増加によりE。が小さくなることからCO,と吸着サ イトの相互作用が弱まっている可能性を指摘した。 このように、固体NMRでCO2の吸着状態を詳細に 解析できることを示した重要な研究である。彼らは その1年後、モンテカルロ法による細孔中のCO₂の 自由エネルギーの計算より, MOF-74中のCO2は一 軸回転運動でなく揺動運動と吸着サイト間のホッピ

図4. (a) ガス雰囲気下 MAS NMR 測定用のジルコニア製回転試料管.市販の JEOL 4 mm 回転試料管の形状を基に筆 者らが設計した.ネジ式の上部キャップに取り付けたOリングによって試料管内に大気圧以上のガスを封じる ことができる.試料管へのガスの導入は(b)に示す配管を用いて行う.回転導入器を用いることで,任意の圧 力のガス雰囲気下にて試料管のふたを開閉できる.

図5. (a) ハニカム型構造を有する MOF-74 の結晶構造. 6角形の頂点に位置する部位が主な吸着サイトとして知られ る. (b) MOF-74 に吸着した CO₂の運動モデル.上が一軸回転運動,下が一軸回転と吸着サイト間ホッピングの 複合運動. (c) Reimer らによる MOF-74 中の CO₂が一軸回転運動を行っているとした場合の¹³C 粉末パターンの 解析結果⁴⁰⁾. [Adopted with permission from ref 40. Copyright 2012 American Chemical Society.]

ング運動を行っている可能性を提案し、そのような 2種類の運動の組み合わせでもCSAの粉末パターン を再現しうることを報告している⁴¹⁾。その翌年には The University of Western OntarioのHuang らによって 固体¹⁷O NMR測定が行われ、¹⁷O核のCSAと四極子 相互作用が合わさった線形の解析により、 θ ~20~30° 程度の一軸回転運動と吸着サイト間のホッピング運 動 (図5b) が起きていると提案された³⁴。

Huang グループは MOF-74 以外にも、様々な MOF 中に吸着したCO2のダイナミクス解析に取り組んで いる。彼らは¹³C CSAによる粉末パターンを利用し たローカル運動の解析に加え、¹³C CP 測定やXRD, 計算科学手法などによる静的な吸着構造の解析も行 うことで、CO2の吸着状態を効果的に解析している。 例えば、CdSDBおよびPbSDBと呼ばれるCd²⁺およ びPb²⁺からなる構造のMOFに対し、単結晶 XRDと 固体¹³C NMRを組み合わせた解析を行っている⁴²⁾。 CO2吸着下での単結晶構造解析によって MOF 中の CO2吸着位置を特定し、また¹³C粉末パターンを解 析することで、CO₂が吸着サイト上でどのように運 動し、また吸着サイト間をどのようにホッピングす るのかを明らかにした(図6)。固体NMRは局所的 な静的・動的構造の解析を得意とする一方、結晶構 造のような全体構造を把握することは難しく、また XRDは逆の性質を持つため、これら二つの手法を 相補的に組み合わせることは非常に有効と言える。 α-Mg formateと呼ばれる Mg²⁺とギ酸イオンからな る MOF中のCO₂に対しては、¹³C粉末パターンによ る一軸回転運動およびホッピング運動の解析に加 え、分子動力学計算によって細孔中のCO₂の位置を 解析している⁴³⁾。計算で得られたCO₂の位置の分布 はNMR から得られた分子運動の様子とよく一致し ており、計算結果の妥当性を実験的に示しつつ、細 孔内でのCO₂の動きや吸着部位を可視化することに 成功している。

上記の例はすべて静止状態の試料の固体NMR測定 により行われているが、MAS法を用いた解析の例 も紹介する。UTSA-16と呼ばれるMOFに吸着した CO₂に対し、MASによりCSAが平均化され先鋭化 した¹³C信号のピーク位置の温度変化から、温度に 応じた吸着部位の変化が解析されている²²⁾。ピーク 位置の変化の幅は1 ppm程度であるが、MASを行わ ない場合はCSAとMOF中の常磁性Co²⁺イオンの影 響で粉末パターンは300 ppmに及ぶ線幅を示してお り、このような等方化学シフト値の小さな変化が検 出できたのはMAS法を用いたためと言える。筆者 らは気密性の回転試料管を作製し、先述のMOF-74 に対し 0.01-1 MPaの CO₂圧力下で¹³C MAS NMR測

図6. (a) PbSDB中に吸着した CO₂の¹³C 粉末パターン (実線) および一軸回転運動と二つの吸着サイト間のホッピン グ運動を仮定したシミュレーション線形 (破線). (b) 単結晶 XRD より得られた,吸着した CO₂を含む PbSDB の 局所構造.固体¹³C NMR より明らかにされた CO₂の運動の様子も示されている. [Adopted with permission from ref 42. Copyright 2016 American Chemical Society.]

定を行った³⁹⁾。MASで先鋭化したCO₂の¹³C信号か らは圧力上昇に伴う0.1 ppm 程度のピークシフトが 観測されている(図7)。MOF-74中においてCO₂は ガス圧の上昇に伴い,低圧時に吸着する第1吸着サ イトとは異なる第2吸着サイトにも吸着し,それら サイト間のホッピングによる交換の様子がピークシ フトとして現れていると解釈できる⁴⁴⁾。10-20 ppm 程度の線幅を示す静止状態の粉末パターンの解析で は、0.1 ppm 程度のピークシフトはノイズによる誤 差に埋もれてしまう可能性があり、やはり等方化学 シフト値の解析における MAS法の有効性がうかが える。

CO₂の一軸回転運動の傾きおよびホッピング運動 による角度変化が小さいとき,粉末パターンは線幅 が200-300 ppmに及ぶような非常に広幅な信号を示 す。このような場合は静止状態で測定するより,数 kHz程度でMASを行いスピニングサイドバンドに よって信号をスパイク上にすることで,測定感度を 大きく向上しつつCSA解析を行える。筆者らは, CID-Meと呼ばれる MOF (図8a)の狭い1次元細孔中 に吸着したCO₂に対し,¹³C MAS NMR測定を行い その運動性を解析した³³⁾。細孔中の吸着部位である キャビティ部にCO₂が1分子吸着する0.03 MPaから 2分子吸着する1 MPaまで圧力を変化させて測定し, サイドバンドパターンに対するフィッティングで CSA 値を取得し式(2) によって回転の傾き*θ*を求め

図7. MOF-74中に吸着したCO2の固体¹³C NMRスペクトル. 測定は0.01-1 MPaの圧力下にて、(a)静止状態および(b) MAS下の試料に対し行われた.
 0.01および0.05 MPaの粉末パターンに対し、図5bの一軸回転+サイト間ホッピング運動を用いて行った線形シミュレーションの結果も示している.

た (図 8b)。その結果, 0.03 MPa では θ = 32°, 1 MPa では θ = 24°と吸着量の増加に伴う θ の減少が確認さ れた。これは, CO₂が狭い細孔内にて配位子や別の CO₂による立体障害を受け,運動が制限されている

 図8. (a) CID-Meの結晶構造および細孔部分を拡大した局所構造.1次元細孔のキャビティ部およびウィンドウ部を ハイライトして示している.(b) CID-Me中に吸着したCO2の¹³C MAS NMR スペクトル(実線)およびサイドバ ンドパターンに対するフィッティング結果(破線).解析より得られた回転の傾き角θも示した.(c)吸着¹³CO2-気体¹²CO2交換実験により得られた,吸着したCO2の¹³C 信号強度の変化.0.03および0.95 MPaの圧力下で実験を 行い,指数関数を用いたフィッティング(実線)よりそれぞれの圧力での交換速度を3.5×10⁻⁴および7.0×10⁻⁵s⁻¹ と得た.(d) CID-Me中に吸着したCO2 (0.03 MPa)および CH₄ (0.10 MPa)の¹³C CP 信号のコンタクトタイム依存性.

ことを示している。CID-Meは細孔のウィンドウ部 (図8a参照)において配位子の一部が回転運動を有 しており,この回転の際に細孔径が2.5 Åから3.4 Å 程度まで動的に拡大する特徴を持つ。筆者らは固体 ²H NMR測定により,高圧下ではキャビティ部に2分 子吸着したCO2が立体障害となり,配位子の運動性 も制限される様子を観測した。これらの知見を基に, 配位子の運動性の低下による細孔径の拡大の抑制が CO2の細孔内拡散に影響を及ぼすことを見出してお り,その詳細は次節にて紹介する。

3.2 CO2の細孔内拡散

CO₂の拡散の解析では、多くの場合拡散NMR法が 用いられている。MOF 細孔中におけるCO₂に関して は、先述の通り、10⁻⁸-10⁻¹⁰ m²/s程度の拡散係数が 拡散NMR測定により観測されている。通常の測定 では単一の拡散係数が得られるのみにとどまるが、 中には粉末パターンを利用することで、細孔構造に 依存した拡散速度の異方性を解析した報告もある。 2.1節で述べたように、固体試料は異方性相互作用 のため、NMRの静磁場に対する結晶や分子の向き によってピーク位置が変化し、その足し合わせが粉 末パターンである。吸着したCO₂の場合も同様に、 ホストである結晶の磁場に対する向きとともにCO₂ の向きが変わり、CSAにより¹³Cピークの位置が変 化する。ここで、例えば結晶のa軸方向とbc軸方向

で細孔径が異なるような異方的な細孔構造の場合. 結晶の向きとともに異方的な細孔の向きも変化する ため、CO₂の¹³C粉末パターンは磁場に対する細孔 の向きを反映したものとなる。これに対して拡散 NMR 測定を行い.磁場勾配による粉末パターンの変 化を解析することで, 拡散係数の細孔方向依存性を 測定した例がいくつか報告されている^{27-29,37)}。ここ では一例として、先述の1次元細孔を持つMOF-74 の同形構造体(図9a)に対する, Reimerらによる測 定結果を紹介する^{28,37)}。実験では1次元細孔方向に 長い針状の結晶が使用され、図9bに示すように、 吸着した CO₂の粉末パターンの低周波数側および高 周波数側のエッジが、それぞれ静磁場Bo方向に対し 結晶が平行および垂直に向く場合と対応する。磁場 勾配パルスGzをB0と平行方向に印加しながら¹³C拡 散NMR測定を行ったところ、パルス強度の増加に 伴い粉末パターンの低周波数側がより速く強度が減 衰する様子が観測された。このことは、1次元細孔 方向の拡散の方が、細孔と垂直方向の拡散よりも 速いことを示している。彼らはスペクトルシミュ レーションによる解析より、1次元細孔方向の拡散 係数 (D_{\parallel}) を 6.5×10⁻⁹ m² s⁻¹,細孔と垂直方向 (D_{\perp}) を3.9×10⁻¹¹ m² s⁻¹と得ている。1次元細孔にも関わ らず細孔と垂直方向にCO2が拡散できるのは、欠陥 により細孔壁に穴が空いているためとされる。

 図9. (a) MOF-74の同形構造体であるZn₂ (dobpdc)の 結晶構造.1次元細孔中におけるCO₂の拡散の方 向に対応して拡散係数D_{//}およびD₁が図のように 定義されている.(b) Zn₂ (dobpdc) 中のCO₂の¹³C 拡散NMRスペクトル.静磁場B₀と平行方向に印 加した磁場勾配パルスG₂の強度を上げながら測 定された.B₀に対するMOFの結晶の向きと粉末 パターンのエッジとの対応が示されている.[Adopted with permission from ref 28. Copyright 2018 American Chemical Society.]

筆者らは拡散NMR以外の手法で拡散速度を見積 もる試みを行っており、これについても紹介する。 3.1節で述べたように、筆者らはCID-Meと呼ばれる MOFの1次元細孔中にて、CO₂の吸着に伴い配位子 の運動性が低下する様子を観測した。このCID-Me の細孔径は配位子の回転の際に拡大する性質を持 ち、したがって高圧下にて回転速度が低下すること で細孔径拡大が抑制され、CO2の拡散が遅くなると 予想される。これを実証するため、初めにMOFに ¹³C同位体濃縮CO₂(¹³C 99%)を吸着させ、その後 MOFを通常のCO₂(¹²C 99%)下に置くことで細孔内の ¹³CO₂と¹²CO₂を交換し、その速度を¹³C MAS NMR でモニターするという実験を行った。細孔内に吸着 したCO2が細孔外の気体のCO2と入れ替わる過程で は細孔内の拡散を経ることになるため、交換速度に は拡散速度が反映されると期待される。圧力条件を 細孔キャビティ部にCO₂が一つ吸着する 0.03 MPa および二つ吸着する 0.95 MPaと設定し、図4に示し たスクリューキャップ式の気密回転試料管および専 用に設計した配管を用いることで各圧力下において ¹³CO₂を吸着したMOFを¹²CO₂に晒し、¹³C信号の経 時変化を観測した。その結果、図8cに示すように 吸着した¹³CO₂の信号強度が¹²CO₂との交換で徐々 に減衰していく様子が確認された。指数関数による フィッティングより交換速度は0.03 MPaでは3.5× 10⁻⁴ s⁻¹, 0.95 MPaでは7.0×10⁻⁵ s⁻¹と得られ, 配位子 の回転速度が低下する高圧下にてCO2の細孔内拡散 速度も低下することが示された。なお、実験に用い たMOFの結晶サイズ (~10-50 µm) より拡散係数を 概算すると 10^{-13} - 10^{-15} m² s⁻¹となり、一般的なMOF 中のCO2の拡散よりもだいぶ遅いことがわかる。こ れは狭い細孔中における回転する配位子の立体障害 の影響であり、このような細孔構造だからこそ配位 子の回転速度がCO2の拡散に影響を及ぼしたと考え られる。

このCID-Meの研究において、筆者らはCP法を用 いた拡散速度の解析も行った。CID-Meに吸着した CO₂は遅い拡散によりCP法で¹³C信号が観測できる。 CPにおける磁化移動の速度は、核間距離に依存し た双極子相互作用の大きさによる。そのため、磁化 を移すCPパルスの照射時間(コンタクトタイム)に 依存してどのように磁化が増幅されるかを調べるこ とで、核間距離の情報が解析できる。研究ではCO₂ と比較的分子サイズが近く、また一般にCO2より吸 着が弱いCH₄について、CID-Meに吸着した場合CP 法で¹³C信号が観測できることを確認したため、その 信号強度のコンタクトタイム依存性を測定し、CO2 との比較を行った。その結果、図8dに示すように 両分子ともほぼ同様のコンタクトタイム依存性を示 した。CH4は吸着状態でも分子全体が回転運動をし ており⁴⁵⁾,これにより分子内の¹H-¹³C双極子相互作 用が平均化されCPに寄与しないため、CO2同様に 配位子の¹Hからの磁化移動で信号が観測されてい る。したがってこの結果は、CO2およびCH4の¹³C 核と配位子の¹H核との平均核間距離が同程度.す なわち同じような速度で拡散していることを示して いる。一般に吸着の弱いCH4の方が細孔内を拡散し やすいと予想されるが、狭い細孔内では吸着の強さ よりも立体障害が拡散速度に効くと考えられる。こ のような状況下で立体障害となる配位子の回転速度 を制御できれば、ガスの拡散速度は分子サイズ選択 的にコントロール可能であることを本研究は提案す る。

4. まとめと今後の展望

本稿では、固体¹³C NMR によって吸着した CO₂ の分子運動がどのように観測されるのか、その理論 的背景とMOFを対象とした実際の解析例について 解説した。固体NMRでは細孔内におけるCO2の ローカルな運動、具体的には吸着サイト上での回転 運動や吸着サイト間のホッピング運動を、運動の角 度や速度、活性化エネルギーまで解析可能である。 そのため、細孔中にCO₂がどのように取り込まれて いるのかを詳細に明らかにすることができる。ま た,細孔内における拡散速度の評価も可能であり, これは特にガス透過分離において分離能を左右する 重要なパラメーターとなる。加えて、固体NMRに XRDや計算科学手法による吸着状態の解析を組み 合わせることも有効な方法である。こうした解析法 はMOFに限らず、ゼオライトなど他の多孔性材料 に対しても適用可能であろう。またCO2以外のガス 種に対しても、やはり同じように解析が可能であ り、MOFに吸着したH₂やCH₄などを対象とした研 究が報告されている¹⁶⁾。ここまで紹介したものは すべて単一のガス種の吸着状態を調べたものだが, 一方で実際のガス分離の対象となる混合ガスについ ては、MOFにおいては筆者が知る限り固体NMRで 吸着状態のダイナミクスを調べた例は報告されてい ない。混合ガス下における吸着状態を調べること で、ガス分離等のメカニズムを分子レベルで解析可 能であろう。CO₂を含むガス分子の吸着・分離の研 究における固体NMRの利用が盛んになれば、多孔 性材料の開発・応用の更なる進展につながると期待 される。

謝辞

図2のスペクトルは金沢大学・水野教授の作製し たソフトウェアを用いて計算した。図7はガス雰囲 気下固体NMRの研究における共同研究者である徳 島大学・犬飼准教授にご提供いただいた。また、固 体NMRによる複雑な解析の説明が少しでも読みや すくなるよう、日本女子大学・佐藤助教に文章を校 正していただいた。本研究の一部は科学研究費助成 事業(20K15298,23K13717)を受けて実施された。 この場を借りてお礼申し上げます。

参考文献

- H. Wu, J. M. Simmons, G. Srinivas, W. Zhou, T. Yildirim, J. Phys. Chem. Lett., 1, 1946 (2010).
- W. L. Queen, C. M. Brown, D. K. Britt, P. Zajdel, M. R. Hudson, O. M. Yaghi, J. Phys. Chem. C, 115, 24915 (2011).
- S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna, B. Chen, *Nat. Commun.*, 3, 954 (2012).
- H. Yang, F. Guo, P. Lama, W.-Y. Gao, H. Wu, L. J. Barbour, W. Zhou, J. Zhang, B. Aguila, S. Ma, *ACS Cent. Sci.*, 4, 1194 (2018).
- H.-M. Wen, C. Liao, L. Li, A. Alsalme, Z. Alothman, R. Krishna, H. Wu, W. Zhou, J. Hu, B. Chen, *J. Mater. Chem. A*, 7, 3128 (2019).
- C. Serre, S. Bourrelly, A. Vimont, N. A. Ramsahye, G. Maurin,
 P. L. Llewellyn, M. Daturi, Y. Filinchuk, O. Leynaud, P. Barnes, G. Férey, *Adv. Mater.*, 19, 2246 (2007).
- N. A. Ramsahye, G. Maurin, S. Bourrelly, P. L. Llewellyn, C. Serre, T. Loiseau, T. Devic, G. Férey, *J. Phys. Chem. C*, **112**, 514 (2008).
- 8) W. Yang, A. J. Davies, X. Lin, M. Suyetin, R. Matsuda, A. J. Blake, C. Wilson, W. Lewis, J. E. Parker, C. C. Tang, M. W. George, P. Hubberstey, S. Kitagawa, H. Sakamoto, E. Bichoutskaia, N. R. Champness, S. Yang, M. Schröder, *Chem. Sci.*, **3**, 2993 (2012).
- H. Tanaka, S. Hiraide, A. Kondo, M. T. Miyahara, J. Phys. Chem. C, 119, 11533 (2015).
- I. Skarmoutsos, Y. Belmabkhout, K. Adil, M. Eddaoudi, G. Maurin, J. Phys. Chem. C, 121, 27462 (2017).
- F. Salles, H. Jobic, T. Devic, P. L. Llewellyn, C. Serre, G. Férey, G. Maurin, ACS Nano, 4, 143 (2010).

- D. Saha, Z. Bao, F. Jia, S. Deng, *Environ. Sci. Technol.*, 44, 1820 (2010).
- 13) Q. Yang, H. Jobic, F. Salles, D. Kolokolov, V. Guillerm, C. Serre, G. Maurin, *Chem. Eur. J.*, **17**, 8882 (2011).
- 14) T. M. Tovar, J. Zhao, W. T. Nunn, H. F. Barton, G. W. Peterson, G. N. Parsons, M. D. LeVan, *J. Am. Chem. Soc.*, **138**, 11449 (2016).
- V. J. Witherspoon, J. Xu, J. A. Reimer, *Chem. Rev.*, **118**, 10033 (2018).
- 16) Y. T. A. Wong, V. Martins, B. E. G. Lucier, Y. Huang, *Chem. Eur. J.*, **25**, 1848 (2019).
- 17) C. Ye, R. Fu, J. Hu, L. Hou, S. Ding, *Magn. Reson. Chem.*, 31, 699 (1993).
- 18) A. J. Beeler, A. M. Orendt, D. M. Grant, P. W. Cutts, J. Michl, K. W. Zilm, J. W. Downing, J. C. Facelli, M. S. Schindler, W. Kutzelnigg, J. Am. Chem. Soc., 106, 7672 (1984).
- 19) S. G. J. van Meerten, W. M. J. Franssen, A. P. M. Kentgens, J. Magn. Reson., 301, 56 (2019).
- 20) R. L. Vold, G. L. Hoatson, J. Magn. Reson., 198, 57 (2009).
- F. Gul-E-Noor, M. Mendt, D. Michel, A. Pöppl, H. Krautscheid, J. Haase, M. Bertmer, J. Phys. Chem. C, 117, 7703 (2013).
- 22) A. Masala, F. Grifasi, C. Atzori, J. G. Vitillo, L. Mino, F. Bonino, M. R. Chierotti, S. Bordiga, *J. Phys. Chem. C*, **120**, 12068 (2016).
- 23) P. Dais, A. Spyros, Prog. Nucl. Magn. Reson. Spectrosc., 27, 555 (1995).
- 24) K. Díaz, L. Garrido, M. López-González, L. F. del Castillo, E. Riande, *Macromolecules*, 43, 316 (2010).
- 25) A.-K. Pusch, T. Splith, L. Moschkowitz, S. Karmakar, R. Biniwale, M. Sant, G. B. Suffritti, P. Demontis, J. Cravillon, E. Pantatosaki, F. Stallmach, *Adsorption*, **18**, 359 (2012).
- 26) S. Schlayer, A.-K. Pusch, F. Pielenz, S. Beckert, M. Peksa, C. Horch, L. Moschkowitz, W.-D. Einicke, F. Stallmach, *Materials*, 5, 617 (2012).
- M. Peksa, J. Lang, F. Stallmach, *Microporous Mesoporous Mater.*, 205, 11 (2015).
- 28) A. C. Forse, S. A. Altobelli, S. Benders, M. S. Conradi, J. A. Reimer, J. Phys. Chem. C, 122, 15344 (2018).
- 29) A. C. Forse, K. A. Colwell, M. I. Gonzalez, S. Benders, R. M. Torres-Gavosto, B. Blümich, J. A. Reimer, J. R. Long, *Chem. Mater.*, **32**, 3570 (2020).
- 30) Y. Zhang, B. E. G. Lucier, Y. Huang, Phys. Chem. Chem.

Phys., 18, 8327 (2016).

- M. Inukai, M. Tamura, S. Horike, M. Higuchi, S. Kitagawa, K. Nakamura, Angew. Chem. Int. Ed., 57, 8687 (2018).
- 32) B. E. Desveaux, Y. T. A. Wong, B. E. G. Lucier, V. V. Terskikh, P. D. Boyle, S. Jiang, Y. Huang, *J. Phys. Chem. C*, **123**, 17798 (2019).
- 33) T. Kurihara, M. Inukai, M. Mizuno, J. Phys. Chem. Lett., 13, 7023 (2022).
- 34) W. D. Wang, B. E. G. Lucier, V. V. Terskikh, W. Wang, Y. Huang, J. Phys. Chem. Lett., 5, 3360 (2014).
- 35) H. C. Hoffmann, B. Assfour, F. Epperlein, N. Klein, S. Paasch, I. Senkovska, S. Kaskel, G. Seifert, E. Brunner, *J. Am. Chem. Soc.*, 133, 8681 (2011).
- 36) V. Bon, J. Pallmann, E. Eisbein, H. C. Hoffmann, I. Senkovska, I. Schwedler, A. Schneemann, S. Henke, D. Wallacher, R. A. Fischer, G. Seifert, E. Brunner, S. Kaskel, *Microporous Mesoporous Mater.*, 216, 64 (2015).
- 37) A. C. Forse, M. I. Gonzalez, R. L. Siegelman, V. J. Witherspoon, S. Jawahery, R. Mercado, P. J. Milner, J. D. Martell, B. Smit, B. Blümich, J. R. Long, J. A. Reimer, *J. Am. Chem. Soc.*, 140, 1663 (2018).
- 38) J. Z. Hu, M. Y. Hu, Z. Zhao, S. Xu, A. Vjunov, H. Shi, D. M. Camaioni, C. H. F. Peden, J. A. Lercher, *Chem. Commun.*, 51, 13458 (2015).
- 39) M. Inukai, T. Kurihara, Y. Noda, W. Jiang, K. Takegoshi, N. Ogiwara, H. Kitagawa, K. Nakamura, *Phys. Chem. Chem. Phys.*, 22, 14465 (2020).
- 40) X. Kong, E. Scott, W. Ding, J. A. Mason, J. R. Long, J. A. Reimer, J. Am. Chem. Soc., 134, 14341 (2012).
- 41) L.-C. Lin, J. Kim, X. Kong, E. Scott, T. M. McDonald, J. R. Long, J. A. Reimer, B. Smit, *Angew. Chem. Int. Ed.*, **52**, 4410 (2013).
- S. Chen, B. E. G. Lucier, P. D. Boyle, Y. Huang, *Chem. Mater.*, 28, 5829 (2016).
- 43) Y. Lu, B. E. G. Lucier, Y. Zhang, P. Ren, A. Zheng, Y. Huang, *Phys. Chem. Chem. Phys.*, **19**, 6130 (2017).
- 44) R. M. Marti, J. D. Howe, C. R. Morelock, M. S. Conradi, K. S. Walton, D. S. Sholl, S. E. Hayes, *J. Phys. Chem. C*, **121**, 25778 (2017).
- Y. Zhang, B. E. G. Lucier, M. Fischer, Z. Gan, P. D. Boyle,
 B. Desveaux, Y. Huang, *Chem. Eur. J.*, 24, 7866 (2018).

Adsorption and Diffusion Dynamics of CO₂ in Metal–Organic Frameworks Studied by Solid-State ¹³C NMR

Takuya Kurihara

Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University

The development of porous materials including metal–organic frameworks (MOFs) and zeolites and their application to CO_2 separation and storage are important research topics for the sustainability of our society. Understanding the CO_2 capture and separation mechanism is essential for improving the gas sorption ability, designing new porous structures, and applications. Solid-state nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to investigate the adsorption and diffusion dynamics of CO_2 in porous materials. This review focuses on the solid-state ¹³C NMR study of CO_2 adsorbed in MOFs. The Basic theory of solid-state ¹³C NMR and the analysis methods of adsorbed CO_2 dynamics using chemical shift interaction, spin–lattice relaxation, diffusion NMR, etc. are explained. Then, representative solid-state ¹³C NMR studies for adsorption and diffusion dynamics of CO_2 in MOFs are presented.

Key words: solid-state ¹³C NMR, carbon dioxide, metal–organic frameworks, molecular motion, adsorption, diffusion

Copyright © 2023 Japan Zeolite Association All Rights Reserved.