《解説》

気水界面を利用した多孔性フレームワーク結晶 MOF/HOFナノシートの合成・解析・応用

牧浦理恵

厚さが数ナノー十数ナノメートルのシート状のナノ材料は、ナノシートと呼ばれ、完極に薄い機能 材料として、小型化、省資源性の観点から注目を集めている。これまでに報告されている多くのナノ シートは、マクロスケールの材料を剥離することにより製造されるが、高温・高圧下でのマクロ材料 の合成、剥離、剥離体(ナノシート)の分散液の調整、剥離体の製膜など、多くのプロセスを要する上、 超音波などの刺激を必要とする剥離の過程でナノシートが劣化したり、再凝集が起きたりする問題が あった。我々は、常温常圧下で水面上にナノシートの構成要素となる有機分子を含む溶液を滴下する という極めて簡便な方法で、結晶性かつ多孔質の配位高分子(MOF:metal-organic framework)や、有機 分子が水素結合により連結した水素結合フレームワーク(HOF:hydrogen-bonded organic framework)の ナノシートを作製することに成功した。気体と水が接する界面、すなわち気水界面で有機分子が2次 元方向に連結することで、規則正しく穴が空いたシートができ上がる。このナノシートは、気水界面 で凝集することなく安定に存在し、多孔質構造を保持したまま、用途に応じて様々な基板に転写する ことが可能である。このような、分子が規則正しく配列し、形状とサイズが揃った細孔を有するナノ シートは、高性能な分離膜、有機薄膜太陽電池、センサ、電池の電極への応用が期待される。本解説 では、気水界面を利用したMOFおよびHOFナノシートの合成に関して詳細に説明する。

キーワード:多孔性配位高分子,水素結合、気水界面、ナノシート、ラングミュア-ブロジェット膜

1. はじめに

高度情報化社会において,電子機器に対するより 軽く・薄くといった社会的要求に加え,省資源化が 望まれる中,ナノメートルスケールの厚みを有する 2次元物質は,究極に薄い機能材料として注目を集 めている。また,マクロスケールの材料に見られな い特異な化学的・物理的性質を示すため,その基礎 特性にも興味が持たれる。真空蒸着法やスパッタ法 などの気相法により,固体基板上に薄膜を作製する 方法は古くから知られているが,得られる膜の結晶 性や配向状態は基板の種類に大きく左右される。固

受理日:2022年6月4日

大阪公立大学大学院工学研究科物質化学生命系専攻マ テリアル工学分野

〒599-8570 大阪府堺市中区学園町1-2

Email: rie.makiura@omu.ac.jp

Copyright © 2022 Japan Zeolite Association All Rights Reserved. 体基板を用いずに2次元物質が安定に得られれば, 基板の種類を問わず様々な基材上に2次元構造を保 持したまま転写して使用することが可能となり,そ の用途が大きく広がる。このような自己保持型のナ ノスケール2次元物質をナノシートと呼ぶ。ナノ シートが,ナノスケールでサイズと形状が揃った細 孔を有する場合には,分離膜,分子センサ,触媒, エネルギー創製・貯蔵材など,さらなる応用の幅が 広がる。

グラフェンはナノシートの代表として盛んに研究 が行われており¹⁾,その他金属酸化物²⁾や金属カル コゲナイト³⁾のナノシートが報告されている。一方 で,有機分子を構成要素として得られる分子ナノ シートは,構造設計性に優れ,分子の大きさや形状 により骨格構造を変化させることができるため,多 様なナノシートの創製が期待される。分子ナノシー トの創製において,分子間の連結には共有結合のみ ならず,金属イオンとの配位結合,水素結合,分子 間力を利用することも可能であり,分子の種類や作

図1. 気水界面を用いた結晶性分子ナノシートのボトムアップ創製

製条件を変えることにより,単層ナノシートに加 え,多層ナノシートも得られる(図1)。

これらのナノシートのほとんどは、トップダウン 式、すなわち、マクロスケールの材料を剥離するこ とにより得られる。この方法においては、高温・高 圧化でのマクロ材料の合成、剥離、剥離体(ナノ シート)の分散液の調整、分散液からの製膜など、 多くのプロセスを要する。また、剥離の際に、超音 波や剥離溶媒の添加など、物理的・化学的刺激を必 要とするため、ナノシートの破壊、剥離後の再凝集、 固体基板上への均一な製膜が困難など、多くの課題 がある。

気体と水が接する界面,すなわち気水界面を用い た単分子膜の作製は,ボトムアップ式に分類され, ラングミュアーブロジェット膜として古くから知ら れている⁴⁻⁶⁾。親水基と疎水基の両方を含む,両親 媒性の界面活性剤の溶液を水面に滴下すると,界面 活性剤の分子が向きを揃え,ファンデルワールス力 により密に整列するため,ナノシート中にサイズの 揃った細孔を作ることは困難であった。

様々な応用の可能性を有する多孔性のナノシート を, 簡便な方法で作製する技術の開発が望まれてい る中, 我々は, 作製プロセスが少ない気水界面を利 用したボトムアップ式に注目し, 手法の開発に取り 組んできた。そして, 気水界面を利用することで, 有機分子と金属イオンからなる多孔性配位高分子 (MOF: metal-organic framework)ナノ薄膜の作製に 成功した (NAFS-1: nanofilm of metal-organic frameworks on surfaces no.1と称する)^{7,8)}。これは結晶性かつ配 向性を有する MOF 薄膜の初めての例である。気水 界面にて得られたMOFナノシートを固体基板に転 写し、転写プロセスを繰り返すことで膜厚を精密に 制御し、3次元的に結晶性を有するナノ薄膜が得ら れた。構成要素や合成法の改良により、多様な構造 を有するMOFナノシートが得られ⁹⁻¹⁴⁾、最近では、 高い電気伝導性を有するMOFナノシートの作製に も成功した¹⁵⁾。さらに、気水界面合成法により、有 機分子が水素結合により連結したHOF (hydrogenbonded organic framework)¹⁶⁾ナノシートも得られ、 このHOFナノシートは同じ有機分子からなるバル ク結晶とは異なり、気水界面に特異的に形成する結 晶構造を有することがわかった。これらMOFおよ びHOFナノシートの合成方法、解析手法、および 応用展開に関して解説する。

- 2. ポルフィリンを有する MOF ナノシート
- 2.1 気水界面における MOF ナノシートの形成と その場X線回折測定

MOFナノシートを構成する分子として、カルボ キシル基を有する金属ボルフィリン (PdTCPP, 図2 左上)を用いた場合について紹介する⁹⁾。ポルフィ リンは、拡張π共役系を有する安定な平面性複素環 分子であり、その配位能、光機能性、酸化還元活性 から、錯体化学、光化学、触媒化学にわたって幅広 く研究されている。このような機能性に優れるボル フィリンをナノシートに組み込むことで、分子セン サ、光電変換素子、触媒などへの応用が期待される。

まず始めに、下層液としてトラフと呼ばれる浅い 容器を硝酸銅水溶液で満たした(図2下)。ここに含 まれる銅イオンは、PdTCPPのカルボキシル基と反

下層液:硝酸銅水溶液

図2. PdTCPPを用いたナノシート (NAFS-13) の作製と表面圧 (π)-平均分子占有面積 (A) 等温線

図3. π-A 等温線から想定される分子配列

応し、PdTCPP分子同士を連結させる役割を果たす。 PdTCPPを有機溶媒に溶解した溶液を展開液として 下層液上に散布し、表面圧を測定しながら液表面を バリアで圧縮した。バリアとは、トラフの端に液面 に接触するように設置した角柱のことである(図2 下)。バリアを液面に接触させた状態でトラフの中 央に向かって平行移動させると、トラフの有効な表 面積が小さくなる。この動作を、表面圧縮と呼ぶ。 平均分子占有面積(A)に対する表面圧(π)の変化か ら(図2右上)、ナノシートの形成状態やナノシート 中の分子の配向を調べた⁶⁾。金属イオンを含まない 純水を下層液に用いた場合に比べ、硝酸銅水溶液上 では、大きな平均分子占有面積において表面圧が上 昇していた。この違いにより予想される下層液上で の分子配列を図3に示す。純水上では、表面圧縮に 伴い隙間が小さくなるようにPdTCPPが密に配列す る一方、硝酸銅水溶液上では、PdTCPPのカルボキ シル基に銅が配位することでPdTCPPが液面に対し て水平に配向し、正方格子を形成することが想定さ れる。表面圧が10 mN/mにおいてそれぞれのナノ シートを石英基板に転写し、得られた紫外可視 (UV-Vis)吸収スペクトルを図4に示す。純水上で得 られた420 nm付近の強い吸収はPdTCPP由来であ り、純水上で得られたナノシートの方が吸光度が大 きい、すなわちナノシートに含まれる PdTCPP分子 の数が多く、純水上では PdTCPPがより密に配列し ていることが示唆される。

ナノシートの結晶性を確認するため、気水界面に おけるその場放射光X線回折測定を行った。回折計 に組み込まれた二重防振台の上にトラフを配置し、 上述の通り、硝酸銅水溶液上にPdTCPP溶液を展開 し、PdTCPP-Cuナノシート(NAFS-13)を作製した。 図5(a)にNAFS-13の π -A等温線、図5(b)に各表面 圧における面内X線回折パターンを示す。表面圧上 昇前の0mN/mの状態において結晶性に由来する鋭 い反射ピークが複数観測された。この結果は、液面 上でPdTCPPと金属イオンとの間に配位結合が生 じ、表面の圧縮なしに自発的に結晶性のナノシート が形成されていることを示唆している(図6)。類似

図4. PdTCPPからなるナノシートのUV-Vis吸収スペク トル

分子によるバルク結晶の構造解析を参考に¹⁰⁾,得 られた回折パターンから構築したNAFS-13ナノ シートの構造モデルを図5(c)に示す。PdTCPPのカ ルボン酸がCuイオンと反応することで連結し,正 方格子状の2次元ネットワークを形成している。表 面圧が上昇しても,回折ピークの位置は変化しない が,ピークが幅広になる傾向が見られた。このこと は,結晶状態が保持されたまま表面圧縮によりナノ シートが寄せ集められ,過度な圧縮によりナノシー ト同士が衝突してナノシートが崩壊することを示唆 している(図6)¹¹。

これらの結果より、気水界面におけるナノシート の作製においては、分子の下層液上への展開、表面 圧縮が重要なステップであり、これらの作製条件が ナノシートの大きさや結晶状態に影響を与えること がわかった。

2.2 気水界面における錯形成反応制御による MOF ナノシートの大面積化

気水界面を用いた手法は、結晶性のMOFナノ シート作製に有望であるが、応用利用する上では、 均一化および大面積化が重要な課題である。上述の 通り、気水界面における反応制御がナノシートの形 成状態を左右する重要な鍵であることがわかった。 この知見をもとに、新しいナノシートの作製手法を 開発した。従来の方法では、展開液を下層液上に散 布する際に、気水界面にミクロスケールの乱流が起 こり、ナノシートの形成に影響を与える。界面にお

図5. (a) NAFS-13のπ-A等温線, (b) 各表面圧における気水界面 XRD 測定により得られた面内回折パターン,
(c) NAFS-13の面内構造モデル

図7. Post-injection法の概要図

ける錯形成反応を穏やかに進行させることでナノ シートの成長を促し、大面積化が期待される。そこ で. まず金属イオンを含有しない純水上に構成分子 である PdTCPPを散布し,静置した。その後,純水 下層液中にゆっくりと銅イオンを注入する手法を開 発した (post-injection 法, 図7)⁹⁾。この手法において は、PdTCPP分子が気水界面に静置された状態で銅 イオンが純水中を拡散しながらPdTCPPに到達して いくため、界面に乱れが生じない。反応の進行を確 認するために、銅イオンの注入前後において気水界 面におけるその場X線回折測定を行った。注入前は XRDプロファイルにおいて回折ピークが観測され なかったため、PdTCPPのみでは長周期構造を構築 せずに2次元状に凝集膜を形成していると考えられ る(図8)。一方で、銅イオン注入後には、高い結晶 性に由来するピークが複数観測された。また、従来 の方法で作製したナノシートよりもピークの線幅が 狭くなっていることから、よりサイズの大きなナノ シートの形成が示唆された。さらに、液面上の膜状 態をBrewster 角液面顕微鏡により観察したところ、

従来法で作製したナノシートにおいては凝集を示す 白い斑点が観測されたが、post-injection法で得られ たナノシートにおいては斑点が見られず均一な状態 が確認された(図9)。銅イオンが下層液中に拡散し 気水界面に静置されたPdTCPPと穏やかに反応して いくため、ナノシートが成長しサイズが拡大したの みならず、凝集部分のない均一なナノシートを得る ことができた。

このように、作製手法を工夫し気水界面での反応 を制御することに加え、配位部の種類を変更するこ とによっても錯形成反応を変えることが可能であ る。ポルフィリン外周のカルボキシフェニル基をピ リジンに変更し、銅イオンと共にナノシートを作製 した¹²⁾。カルボキシル基は銅イオンと結合する際 にプロトンが脱離し、マイナス一価の配位子として 働くが、ピリジンは中性配位子である。得られたナ ノシート(NAFS-21)は高い結晶性を有し、XRD測 定により得られたピークの線幅は回折計の測定限界 を超えるほど先鋭であった。ピークの線幅から、少 なくとも400 nm以上の均一な結晶ドメインを有す

図9. Brewster 角液面顕微鏡による NAFS-13 ナノシート の表面モルフォロジの観察

るナノシートが得られていることが確認された。

2.3 分子種の変更によるMOFナノシートの構造 制御

ナノシートの構成要素に有機分子を用いる利点 は、分子の大きさや形状により多様な構造を有する ナノシートが得られることである。我々は、ポル フィリン分子を基本骨格とし、置換基の数や長さを 変更することで、骨格構造および細孔形状の異なる

MOFナノシートを得ることに成功した^{13,14)}。

先述の通り、4つのカルボキシフェニル基を有す るポルフィリン (H-TCPP. 図10中) を用いることで 結晶性のナノシートが得られる (NAFS-2)¹⁴⁾。ここ で、HoTCPPはポルフィリンの中心に金属イオンを 含まないが、得られるナノシートの面内構造は基本 的にPdTCPPを用いたNAFS-13と同じである。 H₂TCPPに対して置換基を変更し、2つのトランス 位にのみカルボキシフェニル基を有するポルフィリ ン(*trans*-H₂DCPP,図10左),およびさらに長い4 つの置換基を有するポルフィリン(H₂TCPEPP,図 10右)を用いてナノシートの作製を行った (NAFS-31, NAFS-41)¹³⁾。気水界面を用いた上述と同様の方 法でこれらポルフィリン分子と銅イオンとの反応に よりナノシートを作製した。得られたナノシートを Si基板に転写し、放射光X線回折測定により結晶状 態を確認したところ、いずれのナノシートにおいて も、高い結晶性に由来する先鋭な回折ピークが見ら れた。図10にXRDプロファイルから構築したナノ シートの構造モデルを示す。trans-H₂DCPPにより 形成されたNAFS-31は、結合部が2つのみであるた め、正方格子から少し歪んだ菱形になっている。そ のため、単位格子の大きさもNAFS-2とは異なり、 細孔を隔てる壁が取り除かれたことにより、細長い 形状の細孔を含む構造となっている。一方で, H₂TCPEPPにより形成されたNAFS-41は, NAFS-2 よりも約9Å長い一辺25.63Åの正方格子を有し、格 子の拡大に伴い約19.6Åの開口を持つ細孔を有す る。

図10. ポルフィリンの置換基の変更によるナノシートの構造変調

図11. トリフェニレン誘導体HATPとニッケルイオンから形成されるMOFナノシート(HITP-Ni-NS)の気水界面合成

このように,用いる分子の形状に応じて得られる ナノシート構造を様々に変化させることが可能であ り,分子の2次元積み木細工と言えよう。

トリフェニレン誘導体を有する導電性MOFナ ノシート¹⁵⁾

3.1 気水界面におけるナノシート合成

原料の分子の形状と結合の相手となる金属イオン との組み合わせ、水面での作製条件を工夫すること により、多孔質かつ電気を流すナノシート(HITP-Ni-NS: nanosheet composed of HITP and nickel ions と 称する)を作製することに成功した(図11)。用いた 分子、2,3,6,7,10,11-hexaaminotriphenylene(HATP と 略する、図11左)は平らな三角形状で、電子を運ぶ のに適した π 共役系のベンゼン環を4つ含む疎水性 の中心部の周りに、親水性のアミノ基がバランス良 く配置されている。 HATPをニッケルイオンが含まれる水面に散布す ると、HATPは水面に広がり(図11中),プロトン が脱離して2,3,6,7,10,11-hexaiminotriphenylene (HITP と略する)となり、ニッケルイオンとの配位結合を 介して次々と連結して、六角形の穴が規則正しくあ いたハニカム構造を形成する(図11右)。さらに、 中心部のトリフェニレンのπ電子間の相互作用によ り、水面に対して垂直な方向にも分子が密に積層し た、立体ナノ構造が構築される。また、HITPとニッ ケルイオンとの相互作用により、電気のもととなる 電荷が新たに生じる。π共役系や分子が密に積層し た構造は電荷の通り道となり、ナノシートに電気が 流れるようになる。

3.2 フレームワーク構造の直接観察

HITP-Ni-NSのフレームワーク構造の形成を調べるために,透過型電子顕微鏡(TEM)を用いてナノシートの構造の直接観察を行った。約2ナノメート

ルの正六角形の穴が規則的にあいたハニカム構造の 観測に成功し、気水界面での多孔性フレームワーク 構造を有するナノシートの形成を実証した(図12)。 さらに、走査型原子間力顕微鏡により、HITP-Ni-NSの厚みは約10ナノメートルであることがわかっ た。

3.3 高い電気伝導と光透過能

HITP-Ni-NSの電気伝導度の評価を行った結果, 同種の分子からなるナノシート(100ナノメートル 以下の厚み)の中で最も高い電気伝導度の0.6 S/cm を有することがわかった。また, HITP-Ni-NSの光

図 12. 透過型電子顕微鏡 (TEM) による HITP-Ni-NS 中のハニカム構造の直接観察

透過性の評価を行った結果,可視光領域での光透過 度は99%であり,極めて高い光透過能を有するこ とがわかった。黒鉛,導電性ポリマーなど,多くの 導電体は伝導電子の特性上黒に近い色を有し,光透 過性が低いことが知られているが,今回開発したナ ノシートは,厚さが極めて薄いがゆえに,導電性で ありながら高い光透過能を達成することができた。 このような光透過性の高い導電材料は,ディスプレ イや太陽電池の電極として有用である。

3.4 放射光を用いたナノシートの構造評価と高い 電気伝導実現の理由

従来のナノシートに比べてHITP-Ni-NS において 高い電気伝導を実現できた理由を探るべく,HITP-Ni-NSの結晶構造と配向の詳細を調べた。極めて薄 いナノシートの評価は通常の測定装置では難しく, 精密な構造解析が可能な大型放射光施設で実施し た。X線回折法による構造解析により,想定してい たハニカム構造と積層構造からなる立体ナノ構造が 証明され(図13左),基板に転写された後も,その 構造が保持されることが明らかになった。立体ナノ 構造は、ナノシート中で一定方向に向きを揃えてい ることも確認できた(図13右)。

電荷を人、電荷が流れる経路となるハニカム構造

図14. HITP-Ni-NSが高い電気伝導度を有する理由を人(電荷)と通路(電荷の移動経路)に例えて説明した図

と積層構造を通路とエレベーターに例えて説明する (ハニカム構造が通路,積層構造がエレベーター)。 通路が途切れていたり,急な坂になっていたり,エ レベーターとの間に大きな穴があいていると,人の 移動は困難である(図14左)。通路が平坦でエレ ベーターと適切に接続されていれば,通路がつな がっていない部分が存在しても,人は水平方向,垂 直方向にスムースに移動することができる(図14 右)。HITP-Ni-NSは,後者のように,ハニカム構造 と積層構造が向きを揃えて適切に接続されているた め,電荷の移動がスムースになり,高い電気伝導に つながったと考えられる。

5. 気水界面で特異に形成するHOFナノシート¹⁶⁾
4.1 参照バルク結晶の単結晶構造解析

HOFナノシートの構成要素となる有機分子に、 1,3,5-tris(4-carboxyphenyl)benzene(略称:BTB)を用 いた(図15)。

分子の中心にベンゼン環、その1,3,5位にカルボ キシフェニル基を有する正三角形状の分子である。 BTBはMOF構築の有機配位子として広く用いられ ているが、BTB自体の結晶構造は報告されていな かったため、購入したBTBを再結晶することによ り単結晶を得て、単結晶X線回折測定による構造解 析を行った。その結果、BTB分子の外側に位置す るカルボキシル基が隣接するBTBのカルボキシル 基と二重の水素結合を生成し、正六角形状のリング を形成し、それらが二次元に広がったハニカム構造 を有することがわかった(図16右下)。この正六角 形リングの内径は約3 nm 程度と大きく、別の正六 角形リングが相互貫入することで互いにリングの隙 間を埋めるようにパッキングした構造を有する。図 に示すように、バルク結晶においては、ハニカム構 造が三次元的に複雑に絡み合い、分子が密にパッキ ングした構造をとる。

4.2 気水界面におけるHOFナノシート(LIN-AS-1)の形成とその場X線回折測定

基本的な作製方法は、既述したMOFナノシート と同様であるが、HOFナノシートの場合は、金属 イオンを含まない純水をトラフ内に満たし下層液と した。この純水下層液表面上に展開液としてBTB

図15. 1,3,5-tris (4-carboxyphenyl) benzene (略称:BTB) の分子構造

図16. BTB分子を構成要素として得られるバルク結晶の結晶構造(右下)と気水界面で特異的に創製される多孔性 HOFナノシート(LINAS-1)の結晶構造(右上)

図17. LINAS-1の表面圧 (π)-平均分子占有面積 (A) 等温線と Brewster 角顕微鏡像

溶液を散布し,表面圧を測定しながら液面をバリア で圧縮することでBTBナノシート(LINAS-1)を得 た。平均分子占有面積(A)に対する表面圧(π)の変 化,すなわちπ-A等温線において(図17),表面圧 が急峻に上昇する直線部分を外挿し,横軸と交差す る点がナノシート中の平均分子占有面積と見積もる ことができる。ここで,BTBが連結して図16右上 に示すようなハニカム構造を構築し,単分子層であ ると仮定した場合の平均分子占有面積は約420Å² である。一方で,π-A等温線から見積もられた平均 分子占有面積は約3.5Å²と小さいため,LINAS-1が 単層膜ではなく多層膜であるとともに,一部のBTB が下層液中に溶出していることが考えられる。

液面上でLINAS-1が形成する様子をBrewster角顕 微鏡により観察した。明るい部分がLINAS-1,暗い 部分が液面である。図17中に示すように,表面圧 が低い領域ではLINAS-1の形成が確認されたが,液 面が完全にLINAS-1で覆われておらず,被覆率が低 い。表面圧の上昇に伴い暗い部分の割合が小さくな り,表面圧が20mN/mにおいては,表面全体が LINAS-1で覆われていることが確認された。

LINAS-1の結晶構造を確認するために,気水界面 におけるその場放射光X線回折測定を行った。回折 計に組み込まれたトラフを用いた,上述と同様の方 法で気水界面を用いてLINAS-1を作製した。図18(a) (b)に各表面圧におけるX線回折パターンを示す。

面内X線回折パターンに関して、表面圧上昇前の 0mN/mの状態において結晶性に由来する鋭い反射 ピークが複数観測された(図18(a))。この結果か ら, BTB 同士が純水上で連結し, 表面圧縮なしに 自発的に結晶性のナノシートが形成されていること が示唆された。図18(c)に示す通り、LINAS-1の面 内結晶構造は六角格子 (a=b=31.2 Å) からなること が想定され、この結晶構造に対して、面内X線回折 ピークは全て(hk0)で指数付けすることができたこ とから、LINAS-1は完全配向していることが確認さ れた。表面圧の上昇に伴い, 回折ピークの数と位置 の変化は見られなかったが、ピーク強度がいずれも 上昇していることから. 表面圧縮に伴い測定領域に おけるLINAS-1の物質量が増加していることがわ かる。これは、Brewster角顕微鏡により確認された 表面圧縮に伴うLINAS-1の被覆率の上昇と一致し ている。このことより、表面圧縮過程でLINAS-1の 高い結晶性は保持された状態で、LINAS-1のナノ シートドメインがより密に集まっていることが示唆 される。その場X線回折測定により得られた面外X 線回折パターンにおいては、表面圧上昇前の0mN/m の状態において、単一の回折ピークが確認された (図18(b))。回折ピークが得られた角度より算出さ れた面間距離は3.6Åであり、π-π相互作用距離に 一致することから、π電子を含み平坦性の高いBTB 分子同士が,π-π相互作用により液面上で,液面に

105

図18. (a) 気水界面その場放射光X線回折測定により得られたLINAS-1の面内X線回折パターンと(b) 面外X線回 折パターン(c) LINAS-1の面内結晶構造と(d) 面外積層構造

垂直方向に密に積層した構造を有することが示唆された(図18(d))。表面圧上昇に伴う面外X線回折 ピークの変化は,面内X線回折ピーク同様,ピーク 位置は変化せず,ピーク強度のみ上昇が見られた (図18(b))。

4.3 固体基板に転写後のHOFナノシート(LIN-AS-1)の同定と評価

純水上に形成したLINAS-1をシリコン基板に転 写し(図19(a)),放射光X線回折測定により結晶構 造を同定した。面内および面外X線回折パターン は,液面その場X線回折測定により得られた回折パ ターンと同じであることから(図19(b)(c)),固体

図19. (a) 固体基板表面へのLINAS-1の転写(b) 気水界面からシリコン基板に転写前後(上:転写前,下:転写後) のLINAS-1の面内X線回折パターンと(c) 面外X線回折パターン

図20. (a) シリコン基板に転写後に観察したLINAS-1のAFM像と(b) 断面像(c) AFM像の高さ解析から得られた LINAS-1の膜厚統計分布

基板転写後も、高い結晶性と配向性が保持されてい ることが確認された。

(21)

シリコン基板に転写後のLINAS-1の形状と膜厚 を走査型分子間力顕微鏡 (AFM) により評価した。 図20 (a) (b) に示すように,高さが均一なナノシー ト形状が観察され,高さの統計解析により膜厚を評 価したところ,平均膜厚は9.3±0.2 nmと見積もら れた(図20 (c))。X線回折測定結果から,LINAS-1 表面に垂直方向の積層構造において,面間距離,す なわち単分子層が約3.6 Åであることが示されたこ とから,平均膜厚は9.3±0.2 nmのLINAS-1 は約26 分子層の積層により形成されていることがわかっ た。また,AFM像と統計解析より,LINAS-1のシー トサイズは平均300±10 nmであった。この結果よ り,LINAS-1 はアスペクト比が30以上のナノシー トであることが明示された。

さらに、シリコン基板上に転写したLINAS-1の赤

外吸収スペクトル測定を行った結果,図21に示す ように、1700 cm⁻¹付近にBTBのカルボキシル基に 含まれるC=O結合に特徴的な強い振動吸収が観測 された。また、カルボン酸の二重水素結合を特徴付 ける3050 cm⁻¹を中心とした幅広なピークと2550 cm⁻¹ 付近の複数のピークが観測された。これらの結果 は、X線構造解析から示される水素結合によるフ レームワーク形成を支持する。

LINAS-1の安定性および耐熱評価を行った結果, 3年以上の大気放置や,200℃の加熱においても結 晶構造は保持されることが確かめられた。

4.4 HOFナノシート(LINAS-1)の細孔評価と分子 吸着特性

LINAS-1の細孔評価を行うため、77Kにおける窒素(N₂)ガス吸着測定を行った。吸着測定を行うに際し、気水界面にて作製したLINAS-1のろ過捕集を 多数回繰り返し、測定に十分な試料量を得た。図

図21. BTBバルク結晶(上),真空蒸着により得られたBTB薄膜(中),LINAS-1(下)の赤外吸収スペクトル

図22. LINAS-1 (ピンク)とBTB バルク結晶 (黒)の(a)窒素吸着等温線,(b) Barrett-Joyner-Halenda (BJH),(c)水蒸気 吸着等温線,(d)酸素吸着等温線

22(a)に,窒素ガスの相対圧に対する吸着量の変化, すなわち吸着等温線を示す。

ピンク色のプロットがLINAS-1,黒色のプロット は参照として測定したBTBバルク結晶の結果であ る。同じBTB構成要素からなるにも関わらず、 LINAS-1とBTBバルク結晶の吸着等温線は大きく 異なっていた。LINAS-1においては、低相対圧にお いて急峻な吸着量の上昇が見られたことから、ナノ 細孔の存在が示唆された。一方で、BTBバルク結 晶においては、対応する吸着量の上昇は見られず、

図23. 気水界面合成法により特異的に得られる完全配向多孔性ナノシートLINAS-1(上)とその他の薄膜作製手法に より得られる BTB の形態の比較

ナノ細孔を含まない分子が密にパッキングした結晶 構造を有することが示唆され、単結晶X線構造解析 から示された結晶構造を支持している。窒素吸着等 温線の結果を用いて Barrett-Joyner-Halenda (BJH) 細 孔分布解析を行った結果(図22(b)),2つの細孔分 布が見られた。1~3 nm付近に見られるピークは, 図18(c)に示す結晶構造から想定される約2.7 nmの 細孔内径とよく一致し、有効なナノ細孔の存在が確 認された。298 K における水蒸気 (H₂O) 吸着測定と 77 Kにおける酸素 (O₂) ガス吸着測定の結果を図22 (c) (d) に示す。これらの結果においても、LINAS-1 とBTBバルク結晶では大きく結果が異なり、結晶 構造の違いが由来していることが示唆される。BTB 分子は極性の高いカルボキシル基を3つ含むが、そ れらカルボキシル基の全てが水素結合を形成し得ら れたLINAS-1は、水蒸気の特異吸着は示さず、LIN-AS-1中の細孔は疎水的である点が興味深い。また, LINAS-1においては、低相対圧領域において酸素を 特異的に吸着することから,酸素分子のπ電子と LINAS-1の細孔内部に含まれるベンゼン環のπ電子 間の分子間相互作用が寄与していることが考えられ る。

気水界面により2次元ナノ材料合成の特異性と 優位性

従来の溶液合成においては、溶液中で分子が自由 に動き回れるため、分子同士が様々な方向から相互 介入し、隙間を埋めるように密に集合した結晶が得 られる(図16右下)。一方で、気水界面においては、 分子の配向が制御され、平面性の高い分子において は、分子平面は液面と平行になる。そのため、相互 介入が抑制され、水素結合により2次元に連結し、 規則ナノ細孔を有するナノシートができあがる(図 16右上)。

一般的な液相法による薄膜作製法として、ドロッ プキャスト法,浸漬法が挙げられるが、これらの方 法でBTBの薄膜を作製した場合、バルク結晶と同様 の柱状結晶が基板表面に析出し、ナノシートは得ら れなかった(図23)。また、BTBを真空蒸着法によ り薄膜作製した際には、結晶性の薄膜は得られず、 アモルファス状態であった。このように、気水界面 を利用することで、他の合成法では得られない、特 異構造を有する2次元物質の創製が期待される。

6. まとめ

本稿では、気水界面における錯形成反応を利用し て得られる MOF ナノシートに関して、その作製手 法,その場測定による形成過程の詳細,反応制御お よび分子種の変更によるナノシートの大面積化と構 造制御に関して紹介した。グラフェンをはじめと し、金属酸化物や金属カルコゲナイトなどのナノ シートが盛んに研究されているが、これらのほとん どがバルク結晶を剥離することにより得られてい る。バルク結晶を剥離する方法において、ナノシー トを使用する際には、バルク結晶の作製、剥離、溶 液中への分散, 基板上への製膜など多くのプロセス が必要であり、大面積にわたり均一な膜として製膜 するのは困難である。気水界面においては、均一で 穏やかに反応が進行する溶液反応の特徴を活かしな がら、生成物の成長方向を2次元に制御することが 可能である。この点に着目し、気水界面での錯形成 反応を利用することで、我々は世界に先駆けて結晶 性MOFナノシートを得ることに成功した。気水界 面を用いた手法において、液面への分子溶液の展開 という極めてシンプルなプロセスでナノシートを作 製することができる上、ナノシートの構造を保持し たまま、様々な基板に転写して用いることが可能で ある。また、膜厚は転写回数により精密に制御する ことができる。

7. 今後の展開

MOFナノシートやHOFナノシートは、サイズが 定まった規則ナノ細孔を有するという特徴もある。 このような多孔性のナノシートは、高い選択性と透 過性を兼ね備えた分離膜として理想的であり、分離 膜としての評価も進行中である。さらに、リチウム イオン電池の安定性向上のために,電極活物質-電 解質間の界面層として,MOF薄層を適用する研究 も進行している¹⁷⁻¹⁹⁾。MOF中のナノ細孔がイオン 輸送に有利であり、3次元ネットワーク構造により, 層状化合物に見られるへき開などの構造破壊が起き 難い。液相逐次成長法を用いて,分子レベルで MOF界面層の膜厚を制御し,電池特性に対する MOF界面層の効果の解明を進めている。

参考文献

- 1) A. K. Geim, K. S. Novoselov, Nat. Mater., 6, 183 (2007).
- M. Osada, K. Akatsuka, Y. Ebina, H. Funakubo, K. Ono, K. Takada, T. Sasaki, ACS Nano, 4, 5225 (2010).
- S. Acharya, B. Das, U. Thupakula, K. Ariga, D. D. Sarma, J. Israelachvili, Y. Golan, *Nano Lett.*, 13, 409 (2013).
- G. Roberts, Langmuir-Blodgett Films, Springer, Boston (1990).
- 5) I. Langmuir, J. Am. Chem. Soc., 39, 1848 (1917).
- 6) K. B. Blodgett, J. Am. Chem. Soc., 57, 1007 (1935).
- R. Makiura, S. Motoyama, Y. Umemura, H. Yamanaka, O. Sakata, H. Kitagawa, *Nat. Mater.*, 9, 565 (2010).
- R. Makiura, H. Kitagawa, *Eur. J. Inorg. Chem.*, 2010, 3715 (2010).
- 9) R. Makiura, O. Konovalov, Sci. Rep., 3, 2506 (2013).
- R. Makiura, R. Usui, E. Pohl, K. Prassides, *Chem. Lett.*, 43, 1161 (2014).
- R. Makiura, K. Tsuchiyama, O. Sakata, *CrystEngComm*, 13, 5538 (2011).
- 12) R. Makiura, O. Konovalov, Dalton Trans., 42, 15931 (2013).
- R. Makiura, R. Usui, Y. Sakata, A. Nomoto, A. Ogawa, O. Sakata, A. Fujiwara, *ChemPlusChem*, 79, 1352 (2014).
- 14) S. Motoyama, R. Makiura, O. Sakata, H. Kitagawa, J. Am. Chem. Soc., 133, 5640 (2011).
- 15) T. Ohata, A. Nomoto, T. Watanabe, I. Hirosawa, T. Makita, J. Takeya, R. Makiura, ACS Appl. Mater. Interfaces, 13, 54570 (2021).
- R. Makiura, K. Tsuchiyama, E. Pohl, K. Prassides, O. Sakata, H. Tajiri, O. Konovalov, ACS Nano, 11, 10875 (2017).
- 17) T. Yamada, K. Otsubo, R. Makiura, H. Kitagawa, *Chem. Soc. Rev.*, 42, 6655 (2013).
- 18) R. Makiura, S. Teragawa, K. Tsuchiyama, A. Hayashi, K. Tadanaga, M. Tatsumisago, *Dalton Trans.*, 44, 15279 (2015).
- Y. Kishimoto, S. Yubuchi, A. Hayashi, M. Tatsumisago, R. Makiura, *CrysEngComm*, 19, 4175 (2017).

Metal-organic Framework and Hydrogen-bonded Organic Framework Nanosheets Assembled at Air/Water Interfaces —Synthesis, Characterizations and Applications

Rie Makiura

Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University

Sheet-like nanomaterials with thicknesses ranging from a few nanometers to a dozen nanometers are called nanosheets. Since they are the ultimate thin functional materials, they contribute to miniaturize various devices/ products and resource conservation. Many nanosheets reported so far are produced by exfoliating macro-scale materials. This requires many processes such as synthesis of macro-scale crystals under high temperature and high pressure, exfoliation, preparation of dispersion solutions for exfoliated materials (nanosheets), and film formation of exfoliated nanosheets. In addition, the exfoliation process requires chemical or physical stimulations such as sonication under existence of solvents or grinding which causes degradation and re-agglomeration of the nanosheets. We have developed a simple method by utilizing air/water interfaces for creating molecular nanosheets. The major process is dropping a solution containing organic molecules, which are the building blocks of nanosheets, onto a water surface at room temperature. With the air/water interfacial synthesis, we have succeeded in creating nanosheets of crystalline and porous coordination polymers (MOFs: metal-organic frameworks) and hydrogen-bonded organic frameworks (HOFs: hydrogen-bonded organic frameworks). Organic molecules spread at the air/liquid interface connect each other in a two-dimensional direction and align regularly, resulting in formation of crystalline nanosheets with uniform nanopores. These nanosheets are stable without aggregation at the air/water interface and can be transferred to various substrates depending on the required application while retaining their porous structure. Such nanosheets with regularly arranged molecules and nanopores of uniform shape and size can be used diverse applications including high-performance separation membranes, thin film solar cells, molecular sensors and electrodes of batteries. In this article, detailed synthetic procedures of MOF and HOF nanosheets using the air/water interface are explained together with their characterization methods and potential applications.

Key words: metal-organic framework (MOF), hydrogen-bond, air/water interfaces, nanosheet, langmuirblodgett films

Copyright © 2022 Japan Zeolite Association All Rights Reserved.