《解説》

イモゴライトの構造と特性

鈴木正哉

産業技術総合研究所 深部地質環境研究センター

イモゴライトは天然に存在するナノチューブ状のアルミニウムケイ酸塩である。しかしイモゴライトは一次元の結晶であるため、X線回折においてブロードなピークしか観測されず、現時点では構造解析できる状況にはない。それでもイモゴライトの構造モデルは提唱されているが、それは電子顕微鏡による形態観察や電子線回折、X線回折図形、Siの配位状態あるいは化学組成や密度などを駆使して作成されたものである。本論では、提唱されているモデルのほか、そのモデル構築のために必要となった諸データに加え、イモゴライトチューブ径や、分子シミュレーションによる計算結果も合わせて示した。さらにイモゴライトの特性として、分散凝集挙動および水蒸気吸着特性についても示した。

1. はじめに

イモゴライトは、天然に存在するナノチューブ状 のアルミニウムケイ酸塩であり、軽石や火山灰など 火山噴出物に由来する土壌にしばしば見られるもの である1.2)。天然の土壌中に存在するナノチューブと いうことで、イモゴライトは興味深い物質であると 思われがちであるが、ゼオライト関連の研究をされ ている方々におかれては、イモゴライトの内径の大 きさが最も興味深いかもしれない。筆者自身そのよ うなことには全く無頓着であったが、あるメソポー ラス材料の研究をされている研究者から、イモゴラ イトが有するチューブの内側にあたる細孔の大きさ は、ゼオライトとメソポーラスシリカの間に位置し ており、ゼオライトやメソポーラスシリカではあま り見られない大きさの細孔が形成されていると、教 えてもらったことがある。一般的にイモゴライトの 外径は2~2.5 nm程度, 内径約1 nm, 長さ数十nm ~数µmの管状をしていると言われているが、本論 で述べるように天然に産出するイモゴライトよりも

受理日: 2006年3月28日

〒305-8567 茨城県つくば市東1-1-1 中央第7 産業技術総合研究所 深部地質環境研究センター

e-mail: masaya-suzuki@aist.go.jp

合成イモゴライトの方が径が大きく、さらにSiのサイトをGeに置き換えたGe型合成イモゴライトでは、Si型の合成イモゴライトよりもさらに径は大きくなる。そのような観点から捉えると、内側の細孔はおよそ0.7~1.7 nm程度の範囲の大きさを有している。ゼオライトの細孔は約1 nm程度以下であり、一方メソポーラスシリカの細孔は約2 nm以上であることから、イモゴライトはゼオライトとメソポーラスシリカの間の細孔を有する物質群であるともいえる。

またもう一つのイモゴライトが有する性質としては、1軸方向にのみ成長する一次元結晶であるということである。それゆえゼオライトのようにきちんとした3次元構造をとることができないため、規則的な大きさの細孔を形成することはできない。しかしその一方で、イモゴライトのチューブを配列する等によって、チューブとチューブの隙間に内側と異なった大きさの細孔を形成することができるという利点がある。

元来イモゴライトは、土壌学の分野において土壌 内での養分や水分の移動およびそれらの植物への供 給、有害な汚染物質の集積などに対して重要な役割 を担うという観点から研究が進められてきた。しか し近年、イモゴライトは天然に存在するナノマテリ アルとしても着目されている。イモゴライトはナノ サイズにおける特異な形状と高い比表面積を有する

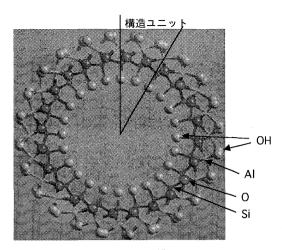


図1 イモゴライトの構造断面図

のみならず、水との親和性や吸着能力にも非常に優れているため、天然ガス等の燃料貯蔵媒体³⁾、生活環境の湿度を自律的に制御する調湿材料、産業廃棄物処理場における有害汚染物質吸着剤、太陽熱や温泉水などの低温熱源を用いて冷媒を作るヒートポンプ熱交換剤⁴⁾、高吸脱着応答性の一側面を利用した速乾性乾燥剤⁵⁾など、さまざまな工業的応用が期待されている。

本稿においては、イモゴライトの構造およびその 構造を推定する要素となった性質に加え、イモゴラ イトが有する物理的・化学的特性についても一部紹 介する。

2. イモゴライトの構造と性質

2.1 構造モデル

イモゴライトの構造モデルに関しては、Cradwick et al. によって提案されているの。提案されたイモゴライトの構造は、水酸化アルミニウムであるギブサイト (α-Al(OH)₃) の単位層を基本とし、その六員環にモノケイ酸が縮合したものである。モノケイ酸の三つのOHは六員環の水酸基と縮合し、残る一つのOHはギブサイト層に垂直な形となる。モノケイ酸のSi-O 結合距離は六員環に収まるにはやや短いため、ギブサイトシートは、ケイ酸の結合した側を内側にして湾曲し、チューブ構造をとるのである。この提案されたイモゴライトの構造モデルの断面図を図1に示す。このモデルにおいては、管の周はギブサイトの単位胞12個から構成されている。また化学

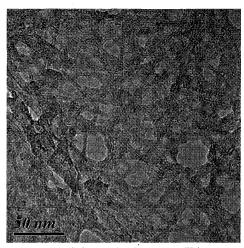


図2 合成イモゴライトのTEM写真

組成は外側からの構造を反映した形として、 $(OH)_3Al_2O_3SiOH$ で表現される。しかしCradwick et al. によって提案されたイモゴライトの構造は,透過型電子顕微鏡下で得られる電子線回折図形に加え,電子顕微鏡写真,化学組成,密度さらにはSiおよびAlの配位環境など,さまざまなデータを組み合わせることによってなされたものであった。以下,イモゴライトに関するデータについて述べる。

2.2 イモゴライトの形態

イモゴライトの外径については、透過型電子顕微鏡による観察から得られた。図2に合成イモゴライトのTEM像を示す。天然に存在するイモゴライトは外径1.8~2.2 nmのチューブであるのに対し⁷⁾,100℃で合成されたイモゴライトは外径2.5~2.8 nmと径が大きい8.9)。合成イモゴライトの外径が天然イモゴライトの外径より大きいのは、加熱温度の違いによるものであり、25℃で7年間かけて合成されたイモゴライトは天然イモゴライトの大きさに近いものであった¹⁰⁾。さらに合成イモゴライトにおいては、SiをGeに置換して合成することが可能であり、このGe置換型イモゴライトは外径約3.3 nmとなる⁹⁾。

また、イモゴライトが中空な繊維状であることが明らかとなったのも、TEMの観察によるものであった¹¹¹。樹脂に包理したイモゴライト試料から繊維に直角に切り出した切片の電子顕微鏡観察では、多数の円環がみられ、このことから外径約2 nm、内径約1 nmであることが明らかとなった。そしてイモゴラ

イトの内径についてであるが、筆者らの測定では、100 °Cで合成したイモゴライトにおいて、窒素吸着データから Holvas-Kawazoe 法により細孔径を求めたところ、 $0.9 \sim 1.2$ nm であった。

イモゴライトの外径と内径については、分子シミュレーションによる計算結果も報告されている $^{12)}$ 。その結果によると、管の周におけるギブサイトの単位胞数 Nu=10 のとき外径 1.90 nm・内径 1.02 nm,1.00 nm・内径 1.00 nm・内径 1

2.3 化学組成および密度

イモゴライトの化学組成については,風化軽石層からゼラチン状被膜として得られたほぼ純粋な試料から求められ,Si/Al モル比は $0.52 \sim 0.57$ であった 13)。また構造水の含量は, H_2O/Al_2O_3 比が実測では $2.3 \sim 2.8$ であった 13)(構造モデルでは H_2O/Al_2O_3 比は2.0)。105 ℃乾燥重を基準にしたものでは2.5 になるが,イモゴライトの構造単位間の間隙水は140 ℃で加熱されてはじめて除去されると報告されており,140 ℃乾燥重を基準とするとイモゴライトの H_2O/Al_2O_3 比は2.0に近くなる。

一方密度については、未風乾の風化軽石からイモゴライトを分離し、それを乾燥することなく比重びんに移し、さらに十分脱気することによって密度測定がなされた結果、イモゴライトの密度は2.65~2.75であることが確かめられた¹⁴⁾。

2.4 X線回折図形

イモゴライトのX線回折図形は,一般的に低角側に見られる3本のブロードなピークによって特徴付けられる。合成イモゴライトのX線回折図形を図3に示す。天然のイモゴライトでは $2\theta=6$ °、11°、16°付近に,合成イモゴライトでは $2\theta=4.5$ °、9.5°、13.5°付近にブロードなピークが現れる。この3本のピークは,イモゴライトのチューブの配列によるものであるとされているが,非公式ながらその一方

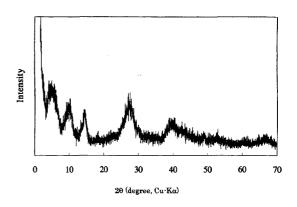


図3 合成イモゴライトの X線回折図形

で一番低角側のピークと3番目に低角側のピークは チューブの配列によるものであるが、2番目のピー クはイモゴライトのチューブ自身によるものではな いかという見解もあり、ピークの帰属については未 だはっきりとした結論は出ていない。

2.5 構造中における Si および AI の配位環境

構造中のSiおよびAlの配位環境の解明は、構造モデルを構築するにあたって大きな情報であったが、Cradwick et al. がモデルを構築した当時には、固体高分解能NMR装置は普及していなかった。それゆえケイ酸イオンの形態分析には、ケイ酸塩を分解すると同時に、生成したケイ酸イオンをただちにトリメチルシリル化してガスクロマトグラフ分析するという純化学的な方法が用いられた¹⁵⁾。これをイモゴライトに適用したところ、ケイ素の95%はモノケイ酸エステルとなり、残りの5%はジケイ酸エステルであった。分解時の重合の可能性も考慮した結果、イモゴライトにおいてはケイ酸四面体は重合せず独立して存在する、ネソケイ酸塩であると解釈された⁶⁾。

もちろん固体高分解能 NMR による状態分析は効果的であり、 27 Al-NMR からはイモゴライト中のアルミニウムイオンは全て6配位であることが明らかとなった 16,17 。また 29 Si-NMR スペクトル上で、イモゴライト中のケイ素は $^{-78}$ $^{-79}$ ppmの位置に単一の化学シフトを示していた。この化学シフトの値は、 $^{-79}$ HO-Si- $^{-99}$ COAl) $_3$ という配位状態を有していることを示すものであった $^{-18,19}$ 。

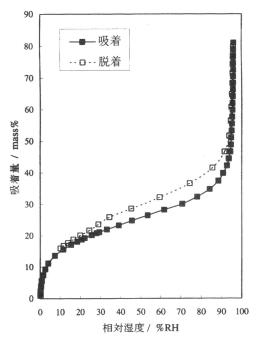


図4 合成イモゴライトの水蒸気吸着等温線

3. イモゴライトの特性

3.1 分散凝集举動

イモゴライトはpH6~7以上で凝集し、高pHで は分散することのないユニークな粘土鉱物である。 またその凝集度合いは非常に強く、水溶液中に分散 したイモゴライトの含有量が0.1 wt% 程度しかない ものでも、アンモニア等のアルカリ溶液を加えるこ とにより、かなりの粘性をもったゾルになる。その 一方、荷電特性では、鹿沼土から分離したイモゴラ イト試料において、イオン交換法による総電荷零点 (PZNC) は6.0~7.2²⁰⁾, 電気泳動法による電荷零点 (狭い意味でのPZC) が8.7²¹⁾, 電位差滴定法による 電荷零点 (PZCE) が5.0²²)で, 測定法によって電荷 零点が大きく異なっている。 イモゴライトはpH 依 存電荷をもつ粘土鉱物であり、PZCより高いpHで は負電荷が次第に増加するにもかかわらず高pHで 凝集する。その理由を、イモゴライトの負電荷はチ ユーブの内側に生じ、アルミナ八面体シートを隔て たチューブの外側への負電荷の影響が弱くなるため と説明している23)。しかしイモゴライトの電荷の詳 細および高pHで凝集する理由の解明はまだ不十分 なようである。

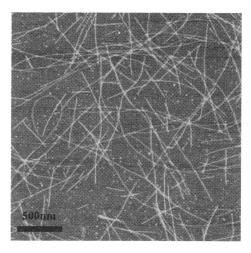


図5 合成イモゴライトのAFM画像

3.2 水蒸気吸着特性

イモゴライトの優れた性質として、水蒸気吸着特 性が挙げられる。合成イモゴライトの水蒸気吸着等 温線を図4に示す。イモゴライトは、相対湿度0~ 10%において急峻な立ち上がりを示し、相対湿度 10~90%においてはなだらかに吸着量が上昇し、さ らに相対湿度90~96%において急峻な立ち上がり を示す。相対湿度0~10%の範囲では、イモゴライ トのチューブ内のみへの吸着となる。チューブ内に 吸着された水を脱水させるには真空に引くあるいは 80℃以上の温度をかけるなどの処理が必要である。 相対湿度10%以上の領域における吸着は、イモゴラ イトのチューブとチューブの隙間によって形成され る細孔によるものである。イモゴライトの水蒸気吸 着性能に関する特筆すべき点は、相対湿度90%以上 の高湿度領域において急峻な立ち上がりを示すこと である。相対湿度90~96%における吸着量は40.0 mass %であり、このことは結露防止材として好適 な材料であることを示しているといえる。相対湿度 90%におけるチューブ間に形成される細孔の大きさ は、Kelvinの毛細管凝縮に新井の補正を加えた式か ら直径21.6 nmと算出される。

このようにイモゴライトはチューブとチューブの 隙間に形成される細孔を有することにより、特異的 な水蒸気の吸着能を示す。これは、イモゴライトは 一軸方向にのみ成長する一次元結晶であること、ま たフレキシビリティーが非常に高いことによるもの である。イモゴライトのチューブの長さおよび曲率等を求めるためには,原子間力顕微鏡による観察が効果的である。(原子間力顕微鏡による画像を図5に示す。)以上のようにイモゴライトは2種類の異なるサイズの細孔を有することができるという長所を有する一方で,チューブとチューブの隙間に細孔を制御することが非常に困難であるという欠点を合わせ持つ。チューブとチューブの隙間にできる細孔を制御することができれば非常に面白い材料ができると思われる。

4. おわりに

本稿において、イモゴライトの構造モデルおよび 諸性質について、紹介させていただいた。イモゴラ イトは1962年に発見され、1972年にモデルの提唱、 1977年に合成に成功し、1980年代にかなりの研究 がなされてきた。しかしイモゴライトは1次元結晶 であるがゆえに、X線回折図形においても、構造解 析に用いられるようなピークを得ることができない ばかりか、4軸回折装置(4軸回折計)等による構造 解析を行えるようなチューブがきれいに配列した結 晶の合成もなされておらず、実際のイモゴライトの 構造は確かめられていないのが現状である。そして 最近いくつかのイモゴライトの工業的用途も見出さ れつつあるが、肝心な工業的大量合成は道筋さえ立 っていない。イモゴライトの研究はかなりなされて いるものの、実際にはこんなにもわかっていないこ とがあるのかというのが現状であるように思われる。 イモゴライトについての知見を多くするには、一人 でも多くの方が研究に携わっていただけることが一 番大きいことである。稚拙な紹介文であるが、もし 本稿をお読みいただき, 何らかの関心をもたれた方 がいらしたら、是非わずかな研究でも進めていただ けると一同嬉しく思っている次第である。

部 辞

本稿に紹介した研究を含め、イモゴライトの研究 は多くの方々のご協力のもとに成り立っている。こ こで述べた研究においては、山口大学 溝田忠人博 士、九州大学 和田信一郎博士、東京工業大学 河 村雄行博士、産業技術総合研究所 渡村信治博士、 前田雅喜博士、犬飼恵一博士、池田智英子氏、佐藤 久代氏,本田純子氏,宮本早苗氏らとの共同研究等 によるものである。御指導御協力を頂いたことを心 より感謝いたします。

45

油 文

- N. Yoshinaga and S. Aomine, Soil Sci. Plant Nutr., 8, 22 (1962).
- K. Wada, In Minerals in Soil Environment 2nd ed., Soil Sci Soc Am., Madison, 1051 (1989).
- W. C. Ackerman, D. M. Smith, J. C. Huling, Y-W. Kim, J. K. Bailey, and C. J. Brinker., *Langmuir*, 9, 1051 (1993).
- 4) 鈴木正哉, 大橋文彦, 犬飼恵一, 前田雅喜, 渡村信司, 溝田忠人, 日本セラミックス協会誌, 109, 681 (2001).
- 5) 鈴木正哉, 鈴木 慎, 前田雅喜, 渡村信司, 溝田忠人, 日本セラミックス協会誌, **109**, 874 (2001).
- P. D. G. Cradwick, V. C. Farmer, J. D. Russel, C. R. Masson, K. Wada, and N. Yoshinaga, *Nature, Phys, Sci.*, 240, 187 (1972).
- 7) N. Yoshinaga, Soil Sci. Plant Nutr., 14, 238 (1968).
- L. A. Bursill, J. L. Peng, and L. N. Bourgeois, *Philos. Mag. A*, 80, 105 (2000).
- S-I. Wada and K. Wada, Clays Clay Miner, 30, 123 (1982).
- 10) S-I. Wada, Clays Clay Miner, 35, 379 (1987).
- K. Wada, N. Yoshinaga, H. Yotsumoto, K. Ibe, and S. Aida, *Clay Miner*, 8, 487 (1970).
- 12) K. Tamura and K. Kawamura, J. Phys. Chem. B, 106, 271 (2002).
- 13) K. Wada and N. Yoshinaga, Am. Mineral, 54, 50 (1969).
- 14) 和田信一郎,人工粘土, 20,2 (1993).
- 15) J. Gots and C. R. Masson, J. Chem. Soc. A, 686 (1971).
- M. A. Wilson, P. F. Barron, and A. S. Campbell, J. Soil Sci, 35, 201 (1984).
- B. A. Goodman, J. D. Russel, B. Montez, E. Oldfield, and R. J. Kirkpatrick, *Phys. Chem. Miner*, 12, 342 (1985).
- P. F. Barron, M. A. Wilson, A. S. Campbell, and R. L. Frost, *Nature*, 299, 616 (1982).
- K. J. D. Mankenzie, M. E. Bowden, I. W. M. Bowden, and R. H. Meinhold, Clays Clay Miner, 37, 317 (1989).
- 20) 軽部重太郎, 杉本英夫, 藤平雅巳, 中石克也, 農土論集, 196, 103 (1998).
- J. Karube, K. Nakaishi, H. Sugimoto, and M. Fujihira, Clay Clay Miner, 40, 625, (1992).
- 22) 北原はるか,軽部重太郎,農土論集, 220,43 (2002).
- 23) Y. Horikawa, Clay Sci, 4, 255 (1975).

Structure and Property of Imogolite

Masaya Suzuki Research Center for Deep Geological Environments, AIST

Imogolite is nano-tube type aluminum silicate that exists naturally. Imogolite is one dimensional like crystal, so several broad peak are shown in XRD profile of Imogolite. Therfore the structural study of Imogolite cannot be done in a present state. Structure model of Imogolite is proposed, but this structure model is the one made by making good use of several data, that is morphorogy from TEM observation, electron diffraction pattern, X-ray diffraction pattern, state of Si coordination, chemical composition and density. In this paper, proposed structural model, several data in order to make structure model, inner and outer diameter of Imogolite tube and calculation result by molecular dynamics method are shown. In addition, behavior of dispersion and coagulation and water vapor adsorption property of Imogolite are shown.

Keywords: imogolite, nano-tube, structure model, TEM, Si-coordination