《解説》

ゼオライトを用いた吸着分離操作

-私達の研究から-

竹内 雍*

ゼオライトヘガスや液体中の成分を吸着させて,成分の分離,精製,あるいは特定成分の除 去・回収を行う操作について,今までの著者らの研究結果を紹介する。

主な項目として以下の4つを上げた。

1) ゼオライト4A, 5A および13X 粒子層での空気中の二酸化炭素の吸着における物質移動過程,

2) ゼオライト5A 固定層への二酸化炭素の吸着における非等温吸着過程,

3) ハイシリカゼオライト粒子層への各種の有機溶剤蒸気の吸着過程,

4) 共沸組成を持つ二成分有機物の混合蒸気のY型ゼオライトへの吸着の挙動

1. はじめに

技術の歴史を紐とくと、ゼオライトと人間の関わ りは古いが、少なくとも工業的意味では1940年代 以降のBarrer 一派やUCC社の研究の功績をあげれば 十分と思われる。筆者は大学を出てからまず人造黒 鉛の製造、物性測定、使用時の性能向上などの研究 に関わり、後に活性炭を吸着剤とした固定層吸着や イオン交換樹脂を性能を調べた。ゼオライトに関わ るようになったのはその後で、1968年頃であった。 しかし使用してみたらゼオライトは扱い易かったし、 構造が明確で、吸着過程の研究には理想的な吸着剤 と思った。

以下,順に筆者が関わったゼオライトを用いた気 体の吸着分離に関する研究成果を紹介したい。

2. ゼオライト4A, 5A および13X 固定層への二酸 化炭素の吸着過程¹⁾

もう30年以上前のことであるが,当時はA型かX 型のゼオライトしか市販されてなかった。その頃, ゼオライトの粒子径は1~10μmといわれた。これ では一桁近い幅があり,物質移動を論じるには思わ しい結果は得られないかも知れないと思った。しか

*明治大学名誉教授(元理工学部工業化学科) 自宅:〒214-0036 川崎市多摩区南生田2-7-1 し当時最新鋭の電子顕微鏡で撮影した結果,ほぼ 10μm近くの揃った形の微粒子からなることが分か った(写真1参照)。そこで,4A,5A,13Xのペレ ットやビーズについて固定層吸着により二酸化炭素 の吸着破過曲線を測定し,粒内拡散係数を求めた。

ゼオライトへの二酸化炭素の吸着量はかなり大き いため、吸着過程で吸着熱による大きな温度上昇が 生じる。それは興味ある事柄であり、次の項で検討 したが、ここでは等温での吸着の挙動を調べた。ま ずある濃度の二酸化炭素を含むガス(キャリアは窒 素かヘリウム)をゼオライトの固定層へ流して平衡 に到達させた。そこで、同位体交換を利用して二酸 化炭素の吸着の挙動を調べた。すなわち, 放射性炭 素(C-12)の二酸化炭素(以下,放射性二酸化炭素 と略記)を混ぜたガスをゼオライトの固定層に流し. 壊変により発生する β線を検出して放射性二酸化炭 素の移動(吸着)を定量した。安定な二酸化炭素と 放射性のそれとの分配比は気相、吸着相とも変わら ないことを利用し、同位体交換が生じるため、放射 性二酸化炭素についての吸着破過曲線が求まる。そ れを直線平衡系の吸着破過曲線の解と比較して粒内 拡散係数を求めた。平衡に達したら、再び通常の二 酸化炭素を含むガスを流すと放射性二酸化炭素の脱 離が起こり、脱離の際の濃度減少曲線(吸着破過曲 線,ただし C/C_0 でなく, $(1-C/C_0)$ をとる。ここ kC;濃度, C_0 :入口濃度(一定)である)を得た。

a) Molecular Sieves 5A pellet b) Molecular Sieves 4A beads (Magnification final ×1300)

写真1 ゼオライト, MS-4A, 5AペレットのSEM写真

このようにして,種々の吸着剤,分圧および吸着 量に対する粒内拡散係数が得られた。

こうして得られた結果は,最も正確に移動過程を 表すものと考えられる。

結果の一例を表1に示した。これよりマクロ孔-ミクロ孔直列拡散モデルが実証された。ゼオライト 4Aでは二酸化炭素の分子径(約0.28 nm)から考え て、マクロ細孔(ゼオライト粒子間の隙間、数nm) とミクロ細孔(ゼオライト内のケージを繋ぐ孔)は ほぼ同程度の抵抗となることが分かった。一方、5A や13Xではミクロ孔の拡散抵抗は極めて小さく、マ クロ細孔の拡散が律速となること、それは分子拡散 が主体で、pararell and tortuous pore model から分 子拡散係数 D_{AB} の値と、マクロ細孔率(ε_a で表し、 通常は0.3程度)および細孔の屈曲係数(τ または k^2 で表す。ゼオライトのペレットなどなどではその値 は約3となる)から粒内有効拡散係数 D_{ei} は式(1)を 用いて推算され、

 $D_{ei} = (\varepsilon_a / \tau) D_{AB} \qquad (1)$

自由な空間で計られた値の,約1/10程度となること が明らかとなった。事実,吸着破過曲線の解析から 得られた結果からそのことが実証された。

ゼオライト5Aの固定層への二酸化炭素の吸着に おける非等温過程の解明^{2,3)}

脱湿の場合,あるいは高濃度の気体の吸着では, 吸着熱の発生により層温度の上昇が起こり,吸着の 進行が遅れることは日常経験するところである。こ

表1 各種のゼオライトに関する二酸化炭素の時定数

ゼオライト	粒径	CO2分圧[mmHg]	$D_{ei} / a^2 [s^{-1}]$
MS5A	1/8", 1/16"	48~760	3 ~~ 6
MS13X	1/8"	"	$2 \sim 8$
MS4A	$#8 \sim 12, #4 \sim 8$	47.9	0.16
"	"	88.2	$0.12 \sim 0.13$
"	11	236	$0.07 \sim 0.09$
11	"	760	0.06

注 マクロ孔拡散係数は $D_{\epsilon a} = (\epsilon_a / k^2) D_{AB}$ により推算可能

 ε_a :マクロ孔細孔率 [-], k^2 :屈曲率 (~4), D_{AB} :相互拡散係数, (CO₂-N₂系, CO₂-He 系, CO₂ 100% 系 (一自己拡散) と異なる。) a: 微粒子の直径

の非等温吸着という問題は一時は大変興味をひいた ものであったが,なかなか正確な実験も解明も出来 なかった。

著者らは、ゼオライト5Aの固定層での非等温吸 着を検討した。実験には、外側を十分被覆した二重 管を用い、両方の管に同じ線流速で同一濃度の気体 を流した。これにより少なくとも半径方向の熱の流 れを防ぐことができたと考えられる。

事実,内外両方でほぼ同様な温度分布が得られ, 吸着破過曲線(層出口における濃度変化)は当然な がらプラトーを持つ二つの部分からなる典型的な形 となった。一方,数値計算でこの濃度,吸着量,温 度の変化を求めるには種々の物性値が必要で,多少 の仮定が必要であった。J.W. Carter⁴)に準じた前 提より,

- ア. 熱に関しては境膜抵抗が支配的で粒子の温度 は粒内の位置によらず一定,
- イ.物質移動については境膜抵抗は小さいので粒 内拡散のみを考えることとした。

その結果,図1に示す結果が得られ,およそ実験 結果のシミュレーションも可能なことが分かった。

また,条件次第で濃度変化にプラトーが生じない 場合もあることも知られた。結果を図2に示す。

ハイシリカゼオライト粒子を用いた有機化合物蒸気の吸着

活性炭を用いると吸着熱,あるいは活性炭の持つ 触媒作用により吸着あるいは脱離中に活性炭層の着 火が起こることがあるため,代わりにハイシリカゼ

図1 非等温吸着における固定層の温度変化(a)と 吸着破過曲線(b)

図2 操作条件により変わる吸着破過曲線と固定層内の温度 変化

オライトが用いられるようになってきた。

そこで,種々の有機化合物,特に有機溶剤と呼ば れる物質の吸着,脱離挙動を調べた。その際,吸着 平衡データ,移動速度のほか,吸着・脱離中に溶剤 の変質が起こらないことが重要である。

以下、順に幾つかの系について得られた結果を示す。

4.1 代替フロンなど(ペフォール)の吸着⁵⁾ 4種のハイシリカゼオライトのペレット(東ソー

図3 4種のゼオライトに対する吸着平衡(吸着質はペフォー ル 5PF)

図4 固定層内の濃度,吸着量分布(吸着性に差のある二成 分系の場合)

製, Si/Al比の異なるY型ゼオライト二種, モルデ ナイト, ZSM-5)を用いて, 固定層吸着破過曲線を 測定し, 吸着平衡データを得た。一例を図3に示し た。また, 吸着等温線をLangmuir型として, 吸着 破過曲線の解析を行った結果, 粒内拡散の機構はゼ オライトにより多少ことなり, マクロ細孔拡散律速 と, ミクロ細孔の拡散も影響する並列拡散の場合も 見られた。

4.2 Y型ゼオライトへのn-ブタノール-p-キシレン 混合蒸気の吸着(自動車用ラッカー溶剤を模擬 した共沸混合物の例)⁶⁾

二成分溶剤蒸気の吸着では,吸着剤が活性炭の場 合はいわゆる吸着の選択性により,吸着され難い成 分(一般に低分子,あるいは構造が簡単なもの)の

図5 共沸を示す混合物蒸気のY型ゼオライト固定層での破過曲線

図6 イソプロパノールートリクロロエチレン-Y型の系で得られた吸着破過曲線

(4)

吸着量は低く,その結果,早く破過することが知ら れている。吸着の途中に固定層の長さ方向に例えば 図4のような濃度,吸着量分布が生じる。

しかし,共沸組成を持つ二成分有機物の混合蒸気 のY型ハイシリカゼオライトへの吸着においては, 固定層における吸着の挙動が蒸気の組成により異な り,蒸留における共沸の現象,つまりある組成の時 は二つの成分が同時に破過し,あたかも一成分の場 合の吸着破過曲線が現れること,その組成の前後で, 二つの成分の吸着性が逆転し,固定層からの破過の 順序が変わることが分かった。

結果の一例を図5に示した。

なお、上記の二成分のほかに、常に最も多く吸着 され、最後に破過する2-ブトキシエタノール(以下 n-ブチルセロソルブと記す)を加えた三成分上記で も、二成分の挙動は変わらなかった。全体の吸着量 は組成によりあまり変わらず、ほぼ α ケージの細孔 全部が吸着に与かるように思われた。

等温下で測定された吸着破過曲線の解析法は色々 あるが、ここでは平衡をLangmuirの式で近似し、河 添らのR-ζ法、あるいは計算曲線との対比(カーブ フィッティング法)から求めた結果、共沸組成近く までは、図上で操作線が引ける(つまり推進力とし て濃度差をとることが出来る)ので、近似的解析が 可能であった。ただし、たとえ近似的方法といって も、すべての濃度域を一度に調べることは困難であ った。それでもマクロ孔拡散律速に替わりはないが、 時には多少、吸着材のミクロ細孔内の拡散抵抗を考 慮する必要があることが分かった。

三成分系では,破過曲線の解析はさらに複雑であ るが,問題となるのは二成分の挙動(破過の順序の 入れ替わり)であるので,二成分系吸着過程を知る ことが重要と思われる。なお,最近,二つの共沸組 成を示す,つまり,濃度の全域について図6の1~V の五つの型の破過曲線が得られた例を報告した⁷が, その解析や破過点の予測はなかなか面倒で今後の研 究にまたれる。

5. おわりに

ゼオライトによる吸着分離では,活性炭に比して ゼオライトは構造が均一であるため,吸着平衡や移 動過程の解析が比較的容易である。その一方,ゼオ ライトへの吸着では固体表面への吸着よりは微細な ミクロ孔空間への吸着が支配的となり,吸着質とゼ オライトの微細孔の大きさとの関係で粒内拡散の機 構が異なることが分かった。特に上述のように,最 近利用が活発なハイシリカゼオライトによる有機化 合物の吸着ではY型ゼオライトへの吸着において蒸 留(気液平衡)における共沸と同様な現象が幾つか の系で現れた。その場合,それぞれの成分について 吸着選択性の差という簡単な表現が当てはまらない ことにもなり,複雑な形の固定層吸着破過曲線が生 じることになることが分かった。今後の一層の検討 を期待する。

- 文 献
- Y. Takeuchi and K. Kawazoe, J. Chem. Eng. Japan, 9, 46-52 (1976).
- 竹内 雍, 炭酸ガス問題への展望 第5章第2節吸着分 離技術 工業技術会刊 (1992).
- 3) 秦野健一,明治大学修士論文 (1986.3).
- 4) J. W. Carter, Trans. Inst Chem. Engrs, 44, 253, (1966).
- 5) Y. Takeuchi *et al.*, Proceedings of the 4th Korea-Japan Sympo. on Separation Technology, pp.515-518 (1996).
- Y. Takeuchi *et al.*, Separations Technol., 5, pp.23-34 (1995).
- Y. Takeuchi et al., Fundamentals of Adsorption 6, pp.891-896, Elsevier (1999).

Adsorption Processes by Use of Zeolites - A Review of the Authors' Studies -

Yasushi Takeuchi Dept. of Industrial Chemistry, Meiji University

The following four topics are described according to the authors' past studies, i.e., **1**) Isothermal adsorption and desorption of carbon dioxide onto 4A, 5A and 13X zeolite particle bed to analyse adsorption processes by use of redioisotopic exchange. Results showed that the rate-determining step of intraparticle diffusion changed depending on the size of micropores of zeolite particles in comparison to that of the carbon dioxide. **2**) Nonisothermal adsorption behavior of carbon dioxide in 5A zeolite bed was well described by J.W.Carter. Real feature of nonisothermal fixed bed adsorption was observed by a double column device, with a plateau in the adsorption breakthrough curves. **3**) Equilibrium and kinetic studies of adsorption of some azeotropic mixture on Y-type High Silica Zeolite was studied for n-butanol -p-xylene mixture and for other systems. Turnover of the order of breakthrough occured and an approximate analysis of breakthrough curves was done for a certain concentration range based on a simple method.

Keyword: Adsorption, Zeilite, High Silica Zeolite, Adsorptive Separation, Fixed-Bed Adsorption, Breakthrough Curves

66